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ABSTRACT

This paper introduces and evaluates the Universal Inverted Bottleneck (UIB) block,
a flexible extension of the MobileNet Inverted Bottleneck block, in the context of
MobileNetV4 architectures. Designing efficient neural network architectures for
mobile devices remains challenging due to the trade-offs between model accuracy,
computational complexity, and inference speed. We propose the UIB block, which
incorporates optional depthwise convolutions before and after the expansion layer,
allowing for four distinct variants: the original Inverted Bottleneck, ConvNext-
like, ExtraDW, and Feed-Forward Network. We implement these UIB blocks
in MobileNetV4-style models of varying sizes (Small, Medium, and Large) and
evaluate their performance on the CIFAR-10 image classification task. Our experi-
ments demonstrate that UIB-based models can achieve significant improvements in
accuracy compared to baseline architectures, with the MobileNetV4-Small model
showing an 11.91 percentage point increase in test accuracy (from 65.93% to
77.84%) over the baseline. Interestingly, the MobileNetV4-Medium and Large
models show slightly lower accuracies (77.27% and 77.40% respectively) com-
pared to the Small model, highlighting the importance of careful architecture design.
The ExtraDW variant, while improving over the baseline, underperforms compared
to the original UIB configuration. These results suggest that the UIB block’s
flexibility can lead to more efficient and accurate models for mobile vision tasks,
paving the way for further research into adaptive neural network architectures.

1 INTRODUCTION

The rapid proliferation of mobile and edge computing devices has led to an increasing demand for
efficient neural network architectures capable of running on resource-constrained hardware. These
models must strike a delicate balance between accuracy, computational complexity, and inference
speed to enable real-time processing across a wide range of mobile platforms. The MobileNet
family of models has emerged as a popular choice for mobile vision tasks, leveraging depthwise
separable convolutions and inverted residual bottleneck blocks to achieve high performance with low
computational requirements Goodfellow et al. (2016).

Designing efficient neural network architectures for mobile devices remains challenging due to the
fixed structure of traditional convolutional blocks, such as the Inverted Bottleneck block used in
MobileNetV2 and subsequent variants. These fixed structures may limit their ability to adapt to
different task requirements and hardware constraints. Furthermore, optimizing the trade-offs between
model size, accuracy, and inference speed is often difficult, particularly when considering the diverse
landscape of mobile hardware.

To address these challenges, we introduce the Universal Inverted Bottleneck (UIB) block, a flexible
extension of the Inverted Bottleneck block that incorporates optional depthwise convolutions before
and after the expansion layer. This novel architecture allows for four distinct variants: the original
Inverted Bottleneck, a ConvNext-like block, an ExtraDW configuration, and a Feed-Forward Network.
By providing this flexibility, the UIB block enables more adaptive and efficient neural network
designs for mobile vision tasks.

We evaluate the performance of UIB-based models in the context of the MobileNetV4 architecture,
assessing their accuracy and computational complexity on the CIFAR-10 image classification task.
Our experiments demonstrate that UIB-based models can achieve significant improvements in
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accuracy compared to baseline architectures. The MobileNetV4-Small model with UIB blocks shows
an 11.91 percentage point increase in test accuracy (from 65.93% to 77.84%) over the baseline.
Interestingly, the MobileNetV4-Medium and Large models show slightly lower accuracies (77.27%
and 77.40% respectively) compared to the Small model, highlighting the importance of careful
architecture design.

The main contributions of this paper are as follows:

• We propose the Universal Inverted Bottleneck (UIB) block, a flexible extension of the
Inverted Bottleneck block that enables four distinct architectural variants.

• We implement and evaluate UIB-based MobileNetV4 architectures of varying sizes (Small,
Medium, and Large) on the CIFAR-10 dataset.

• We provide a comprehensive analysis of the performance trade-offs between different UIB
variants and model sizes, offering insights into efficient mobile neural network design.

Our findings pave the way for further research into adaptive neural network architectures for mobile
devices. Future work could explore the application of UIB blocks in other mobile-focused model
families, as well as investigate techniques for automatically selecting the optimal UIB variant for a
given task and hardware constraint. Additionally, extending the evaluation to larger-scale datasets
and real-world mobile deployment scenarios would provide valuable insights into the practical
implications of the UIB block.

2 RELATED WORK

MobileNetV1 introduced depthwise separable convolutions, significantly reducing the number of
parameters and computations required Howard et al. (2017).

3 BACKGROUND

Mobile-focused neural network architectures have become increasingly important due to the growing
demand for efficient on-device inference. These architectures aim to balance model accuracy and
computational efficiency, enabling real-time processing on resource-constrained devices Goodfellow
et al. (2016). The MobileNet family of models has been at the forefront of this effort, introducing key
innovations to reduce computational complexity while maintaining high accuracy.

MobileNetV1 introduced depthwise separable convolutions, significantly reducing the number of
parameters and computations required Goodfellow et al. (2016). MobileNetV2 further improved
upon this design by introducing the inverted residual block with linear bottlenecks, allowing for
more efficient feature representation Sandler et al. (2018). These innovations have paved the way for
subsequent improvements in mobile-focused architectures.

Complementary to these architectural advancements, attention mechanisms have played a crucial
role in improving the efficiency and effectiveness of neural networks. Initially introduced in the
context of neural machine translation Bahdanau et al. (2014), attention mechanisms, particularly
self-attention as demonstrated in the transformer architecture Vaswani et al. (2017), have led to
significant advancements in various domains, including computer vision.

Advancements in normalization techniques, such as Layer Normalization Ba et al. (2016), have
contributed to more stable and efficient training of deep neural networks. Similarly, optimization
algorithms like Adam Kingma & Ba (2014) and its variants, such as AdamW Loshchilov & Hutter
(2017), have improved the training process and generalization capabilities of neural networks.

3.1 PROBLEM SETTING

In this work, we focus on the task of image classification, a fundamental problem in computer vision.
Given an input image x ∈ RH×W×C , where H , W , and C represent the height, width, and number
of channels respectively, our goal is to predict a class label y ∈ {1, 2, . . . ,K}, whereK is the number
of possible classes.

2



AI-Scientist Generated Preprint

We define our neural network model as a function fθ : RH×W×C → RK , parameterized by θ. The
model outputs a probability distribution over the K classes, and we typically use the cross-entropy
loss for training:

L(θ) = − 1

N

N∑
i=1

K∑
k=1

yik log(fθ(xi)k) (1)

where N is the number of training samples, and yik is 1 if the i-th sample belongs to class k, and 0
otherwise.

For mobile-focused models, we make the following key assumptions and constraints:

• Limited computational resources: The model should run efficiently on devices with con-
strained computational power and memory.

• Low latency: The model should be capable of real-time inference, typically requiring low
latency (e.g., < 100ms per image).

• Energy efficiency: The model should minimize energy consumption to preserve battery life
on mobile devices.

These constraints guide our design choices in developing the Universal Inverted Bottleneck (UIB)
block and the overall MobileNetV4 architecture. By addressing these challenges, we aim to create
more flexible and efficient models for mobile vision tasks.

4 METHOD

4.1 UNIVERSAL INVERTED BOTTLENECK (UIB) BLOCK

We introduce the Universal Inverted Bottleneck (UIB) block, a flexible extension of the Inverted
Bottleneck block used in MobileNetV2 and subsequent architectures. The UIB block addresses the
limitations of fixed convolutional block structures, enabling more adaptive neural network designs
for mobile vision tasks.

The UIB block extends the traditional Inverted Bottleneck block by incorporating two optional
depthwise convolutions: one before the expansion layer and one between the expansion and projection
layers. This flexible structure allows for four distinct architectural variants:

1. Original Inverted Bottleneck: No additional depthwise convolutions

2. ConvNext-like: Depthwise convolution before the expansion layer

3. ExtraDW: Both optional depthwise convolutions included

4. Feed-Forward Network (FFN): No depthwise convolutions

Formally, we define the UIB block as a function fUIB : RH×W×Cin → RH×W×Cout , where H , W ,
Cin, and Cout represent the height, width, input channels, and output channels, respectively. The UIB
block can be expressed as:

fUIB(x) = PWproj(DWpost(PWexp(DWpre(x)))) (2)

where PWexp and PWproj are pointwise convolutions for expansion and projection, respectively, and
DWpre and DWpost are the optional depthwise convolutions.

The flexibility of the UIB block allows for more efficient feature extraction and representation
learning. By selectively including or excluding the optional depthwise convolutions, we can adapt
the block’s structure to better suit different tasks and hardware constraints.
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4.2 MOBILENETV4 ARCHITECTURE

Building upon the UIB block, we propose the MobileNetV4 architecture, which incorporates UIB
blocks throughout its structure. We implement three variants of the MobileNetV4 architecture:

• MobileNetV4-Small: A compact model for highly constrained mobile devices

• MobileNetV4-Medium: A balanced model offering a trade-off between accuracy and
efficiency

• MobileNetV4-Large: A more powerful model for devices with greater computational
resources

Each variant uses a different configuration of UIB blocks, with varying numbers of channels and
layers to achieve the desired model size and computational complexity.

4.3 TRAINING PROCESS

We train our MobileNetV4 models using the Adam optimizer Kingma & Ba (2014) with a learning
rate schedule similar to that used in Vaswani et al. (2017). We use cross-entropy loss as our objective
function and apply standard data augmentation techniques, including random cropping and horizontal
flipping, to improve generalization.

For our experiments, we use the CIFAR-10 dataset, which consists of 60,000 32×32 color images in
10 classes, with 6,000 images per class. The dataset is split into 50,000 training images and 10,000
test images. We train each model variant for 30 epochs with a batch size of 128.

4.4 EXPERIMENTAL VARIANTS

In addition to the three main MobileNetV4 variants, we also evaluate a modified UIB configuration:

• ExtraDW variant: This configuration sets both DWpre and DWpost to be active in all UIB
blocks, potentially increasing the model’s representational power at the cost of additional
computational complexity.

By introducing the UIB block and incorporating it into the MobileNetV4 architecture, we aim to
push the boundaries of efficient neural network design for mobile vision tasks. The flexibility and
adaptability of our approach allow for fine-tuned trade-offs between model accuracy, computational
complexity, and inference speed, addressing the key challenges outlined in our problem setting.

Figure 3 illustrates the test accuracy achieved by different MobileNetV4 configurations, demonstrating
the performance improvements gained through the use of UIB blocks.

5 EXPERIMENTAL SETUP

Our experimental setup is designed to evaluate the performance of the Universal Inverted Bottleneck
(UIB) block in the context of MobileNetV4 architectures. We focus on image classification tasks
using the CIFAR-10 dataset Goodfellow et al. (2016), a widely used benchmark in computer vision
research.

The CIFAR-10 dataset consists of 60,000 32×32 color images across 10 classes, with 6,000 images
per class. We use the standard split of 50,000 training images and 10,000 test images. This dataset
provides a good balance between complexity and computational requirements, making it suitable for
evaluating mobile-focused architectures.

We implement and evaluate four variants of the MobileNetV4 architecture:

• MobileNetV4-Small: A compact model designed for highly constrained mobile devices.

• MobileNetV4-Medium: A balanced model offering a trade-off between accuracy and
efficiency.
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Figure 1: Test accuracy comparison across different MobileNetV4 configurations on CIFAR-10

• MobileNetV4-Large: A more powerful model for devices with greater computational
resources.

• MobileNetV4-Small ExtraDW: A variant of the Small model with both optional depthwise
convolutions in all UIB blocks.

We train each model variant for 30 epochs using the Adam optimizer Kingma & Ba (2014) with
an initial learning rate of 0.01 and a batch size of 128. We apply a cosine annealing learning rate
schedule similar to that used in Vaswani et al. (2017). For regularization, we use a weight decay of
1e-4. Standard data augmentation techniques, including random cropping and horizontal flipping, are
applied to improve generalization.

We evaluate our models using two primary metrics:

• Test Accuracy: The classification accuracy on the CIFAR-10 test set, which measures the
model’s ability to generalize to unseen data.

• Training Time: The total time required to train the model for 30 epochs, which provides
insight into the computational efficiency of each architecture.

Our implementation is based on PyTorch Paszke et al. (2019). All experiments are conducted on a
single machine with an Intel Core i7 processor and 16GB of RAM, simulating the resource constraints
of high-end mobile devices.

As a baseline for comparison, we implement a standard MobileNetV3-Small architecture without
UIB blocks. This allows us to quantify the improvements gained by incorporating the UIB blocks
into the MobileNetV4 designs.

Figure 3 illustrates the test accuracy achieved by different MobileNetV4 configurations, demonstrating
the performance improvements gained through the use of UIB blocks.

By systematically evaluating these model variants and comparing them against the baseline, we
aim to demonstrate the effectiveness of the UIB block in improving the accuracy and efficiency of
mobile-focused neural network architectures.
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Figure 2: Test accuracy comparison across different MobileNetV4 configurations on CIFAR-10

6 RESULTS

In this section, we present the results of our experiments evaluating the Universal Inverted Bottleneck
(UIB) block in MobileNetV4 architectures on the CIFAR-10 dataset. We compare the performance
of different model variants against a baseline MobileNetV3-Small architecture without UIB blocks.

Model Test Accuracy (%) Training Time (s)

Baseline (MobileNetV3-Small) 65.93 224.63
MobileNetV4-Small 77.84 233.25
MobileNetV4-Medium 77.27 232.22
MobileNetV4-Large 77.40 234.47
MobileNetV4-Small (ExtraDW) 66.54 255.60

Table 1: Performance comparison of MobileNetV4 variants on CIFAR-10

Table 1 summarizes the performance of our MobileNetV4 variants compared to the baseline
MobileNetV3-Small model. The results demonstrate that the incorporation of UIB blocks in Mo-
bileNetV4 architectures leads to significant improvements in classification accuracy on the CIFAR-10
dataset. The MobileNetV4-Small model achieves the highest test accuracy of 77.84%, representing
an 11.91 percentage point increase over the baseline. This substantial improvement comes at a modest
cost of only 8.62 seconds (3.8%) increase in training time.

Interestingly, the larger MobileNetV4 variants (Medium and Large) do not show further improvements
in accuracy compared to the Small variant. The MobileNetV4-Medium model achieves 77.27%
accuracy, while the MobileNetV4-Large model reaches 77.40%. These results suggest that for the
CIFAR-10 dataset, the additional capacity of the larger models does not translate into improved
performance, highlighting the effectiveness of the UIB blocks in the smaller architecture.

The ExtraDW variant of MobileNetV4-Small, which includes both optional depthwise convolutions
in all UIB blocks, shows only a marginal improvement over the baseline (66.54% vs. 65.93%). This
configuration also results in the longest training time (255.60 seconds), indicating that the additional
complexity introduced by the extra depthwise convolutions may not be beneficial for this particular
task and dataset.
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Figure 3: Test accuracy comparison across different MobileNetV4 configurations on CIFAR-10

Figure 3 provides a visual comparison of the test accuracies achieved by different MobileNetV4
configurations. The plot clearly illustrates the significant performance gain of the UIB-based models
over the baseline, with the MobileNetV4-Small model standing out as the top performer.

Figure 4: Training and validation loss curves for MobileNetV4 variants on CIFAR-10

Figure 4 shows the training and validation loss curves for all runs. The UIB-based models (except for
the ExtraDW variant) demonstrate faster convergence and lower final loss values compared to the
baseline. This suggests that the UIB blocks enable more efficient feature extraction and representation
learning, leading to improved model performance.

Figure 5 compares the total training time for each model configuration. While the UIB-based models
generally require slightly more training time than the baseline, the increase is relatively small (less
than 5% for the best-performing MobileNetV4-Small model). The ExtraDW variant shows the
highest increase in training time, which aligns with its more complex structure.
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Figure 5: Training time comparison for MobileNetV4 variants on CIFAR-10

It is important to note some limitations of our study. First, our experiments were conducted on a
single dataset (CIFAR-10) and may not generalize to more complex datasets or real-world scenarios.
Additionally, we used a fixed set of hyperparameters across all models, which may not be optimal
for each specific architecture. Future work could explore more extensive hyperparameter tuning and
evaluate the models on a wider range of datasets and tasks.

In conclusion, our results demonstrate the effectiveness of the Universal Inverted Bottleneck
(UIB) block in improving the performance of mobile-focused neural network architectures. The
MobileNetV4-Small model, in particular, shows a significant improvement in accuracy over the
baseline while maintaining computational efficiency. These findings suggest that the UIB block’s
flexibility allows for more effective feature extraction and representation learning, paving the way for
more efficient mobile vision models.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced and evaluated the Universal Inverted Bottleneck (UIB) block, a flexible
extension of the MobileNet Inverted Bottleneck block, in the context of MobileNetV4 architectures.
Our experiments on the CIFAR-10 dataset demonstrated significant improvements in accuracy
compared to baseline architectures. The MobileNetV4-Small model with UIB blocks achieved a test
accuracy of 77.84%, representing an 11.91 percentage point increase over the baseline MobileNetV3-
Small model (65.93%).

The results highlight the effectiveness of the UIB block in enhancing the performance of mobile-
focused neural network architectures. Notably, we observed that larger model variants (MobileNetV4-
Medium and Large) did not yield further improvements in accuracy compared to the MobileNetV4-
Small model. The MobileNetV4-Medium achieved 77.27% accuracy, while the MobileNetV4-Large
reached 77.40%, both slightly lower than the Small variant. This finding emphasizes the importance
of careful architecture design and suggests that increased model capacity does not always translate to
improved performance, especially for smaller datasets like CIFAR-10.

Our ExtraDW variant, which incorporated additional depthwise convolutions in all UIB blocks,
showed only marginal improvement over the baseline (66.54% vs. 65.93%) while significantly
increasing the training time. This result underscores that additional complexity does not always
lead to better performance and highlights the need for balanced design choices in mobile-focused
architectures.

The study has several limitations that should be addressed in future work. First, our experiments
were conducted on a single dataset (CIFAR-10) and may not generalize to more complex datasets
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or real-world scenarios. Second, we used a fixed set of hyperparameters across all models, which
may not be optimal for each specific architecture. Future research should explore the performance
of UIB-based models on larger and more diverse datasets, as well as investigate more extensive
hyperparameter tuning techniques.

Future work could explore several promising directions:

1. Investigate the application of UIB blocks in other mobile-focused model families, such as
EfficientNet or MobileViT, to assess their generalizability. 2. Develop techniques for automatically
selecting the optimal UIB variant for a given task and hardware constraint, leading to more adaptive
and efficient neural network designs. 3. Extend the evaluation to larger-scale datasets and real-world
mobile deployment scenarios to provide insights into the practical implications of the UIB block. 4.
Explore the impact of different UIB configurations on model latency and energy consumption across
various mobile hardware platforms. 5. Investigate the potential of UIB blocks in other computer
vision tasks beyond image classification, such as object detection and semantic segmentation.

The flexibility and adaptability of the UIB block open up new possibilities for designing efficient
neural network architectures for mobile and edge devices. By enabling more effective feature
extraction and representation learning, UIB-based models could potentially improve the performance
of a wide range of mobile vision tasks. As mobile and edge computing continue to grow in importance,
the development of more efficient and accurate neural network architectures, such as those based on
the UIB block, will play a crucial role in enabling advanced AI capabilities on resource-constrained
devices.

In conclusion, our work demonstrates the potential of the Universal Inverted Bottleneck block in
improving the efficiency and accuracy of mobile-focused neural networks. While our results on
the CIFAR-10 dataset are promising, further research is needed to fully explore the capabilities and
limitations of UIB-based architectures across a broader range of tasks and deployment scenarios.

This work was generated by THE AI SCIENTIST (Lu et al., 2024).
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