
Strategies for Addressing Model Training Issues

and Architecture Overview

AprilFour

2024

1 Introduction

This document outlines the strategies employed to resolve common model train-
ing issues such as overfitting, underfitting, and data leakage during the training
of a BERT-based Named Entity Recognition (NER) model. It also provides a
description of the BERT model architecture used in this project and the base-
line function for computing evaluation metrics. Additionally, this document
discusses adjustments made to the training arguments to optimize model per-
formance.

1

2 Model Architecture: BERT for NER

The architecture of the BERT model used for Named Entity Recognition is
based on the BERT (Bidirectional Encoder Representations from Transform-
ers) model, which utilizes self-attention mechanisms to capture contextual rela-
tionships between words in a sentence. The architecture comprises the following
key components:

• Embedding Layer: Converts input tokens into dense vectors of fixed
size, representing both the token and its position in the sequence.

• Transformer Encoder Layers: Consists of multiple stacked transformer
blocks, each containing self-attention and feed-forward neural networks.
BERT employs bidirectional attention, allowing it to attend to tokens
both before and after a given word.

• Output Layer: For NER tasks, a classification head is applied to each
token. The model predicts the entity label (e.g., PERSON, ORGANIZA-
TION, etc.) for every token in the input sequence.

• Pre-trained and Fine-tuned: The BERT model is pre-trained on a
large corpus and fine-tuned on a labeled NER dataset to adapt it to the
specific task.

The model is trained to minimize cross-entropy loss over the token classifi-
cations, using a labeled dataset for supervised learning.

3 Baseline Function for Metrics

The function below provides the baseline for computing key evaluation metrics
such as accuracy, precision, recall, and F1-score. These metrics are crucial for
assessing the model’s performance during training and validation.

Listing 1: Baseline Function for Metrics

def compute metr ics (p) :
preds = p . p r e d i c t i o n s . argmax(−1)
l a b e l s = p . l a b e l i d s
p r e c i s i on , r e c a l l , f1 , =
p r e c i s i o n r e c a l l f s c o r e s u p p o r t (l ab e l s , preds , average=’ weighted ’)
acc = accu racy s co r e (l ab e l s , preds)
return {

’ accuracy ’ : acc ,
’ f 1 ’ : f1 ,
’ p r e c i s i o n ’ : p r e c i s i on ,
’ r e c a l l ’ : r e c a l l

}

2

4 Training Issue 1: Overfitting

Overfitting occurs when the model performs exceptionally well on the training
data but fails to generalize to unseen data. The following steps were taken to
address this:

• Step 1: Early Stopping - Introduced early stopping to halt training
when validation loss stopped improving for a certain number of epochs.

• Step 2: Data Augmentation - Increased dataset diversity through
data augmentation techniques, such as synonym replacement and sentence
reordering.

• Step 3: Regularization - Added L2 regularization (weight decay) to
prevent the model from learning overly complex patterns.

• Step 4: Dropout - Increased the dropout rate in the transformer layers
to reduce model complexity and prevent overfitting.

• Step 5: Reduced Model Size - Experimented with smaller BERT
variants (e.g., DistilBERT) to reduce the risk of overfitting.

5 Training Issue 2: Underfitting

Underfitting occurs when the model is too simplistic to capture the underly-
ing patterns in the data, leading to poor performance on both training and
validation sets. To address underfitting, the following strategies were employed:

• Step 1: Increase Model Capacity - Used larger BERT models (e.g.,
BERT-large) to increase the model’s capacity to capture complex relation-
ships.

• Step 2: Fine-Tuning - Fine-tuned the pre-trained BERT model for a
longer duration with a smaller learning rate.

• Step 3: More Epochs - Increased the number of training epochs to
allow the model sufficient time to learn from the data.

• Step 4: Batch Size Tuning - Experimented with different batch sizes
to balance convergence speed and stability.

• Step 5: Feature Engineering - Added additional features or embed-
dings to enhance the model’s input representation.

3

6 Training Issue 3: Data Leakage

Data leakage occurs when information from the validation set or test set leaks
into the training set, resulting in overly optimistic performance metrics. To
prevent data leakage, the following measures were implemented:

• Step 1: Proper Data Splitting - Ensured that the training and valida-
tion sets were split correctly using a random seed and avoided any overlap
between them.

• Step 2: Deduplication - Removed any duplicate examples from both
the training and validation sets to avoid repeated samples.

• Step 3: Cross-Validation - Employed cross-validation to ensure robust
model evaluation by using different subsets of the data for training and
validation.

• Step 4: Stratified Sampling - Used stratified sampling to ensure that
the distribution of labels was consistent between the training and valida-
tion sets.

• Step 5: Monitoring - Regularly monitored metrics across both the
training and validation sets to detect any signs of data leakage.

7 Training Issue 4: Repetitions in the Dataset

Repetitions in the dataset can lead to memorization and artificially inflated
performance metrics. The following steps were taken to handle such issues:

• Step 1: Remove Duplicates - Ran a duplicate check on the dataset
and removed repeated examples to avoid redundancy.

• Step 2: Balance Dataset - Ensured a balanced dataset with diverse
samples for both positive and negative classes.

• Step 3: Data Augmentation - Augmented the dataset with additional,
unique examples to increase the model’s generalization capabilities.

• Step 4: Data Scrutiny - Carefully examined the dataset to avoid in-
cluding redundant patterns that could mislead the model.

• Step 5: Validation Check - Verified that the validation set did not
contain any duplicated examples from the training set.

4

8 Adjusting Training Arguments (Hyperparam-
eters)

To optimize the training process and improve model performance, various train-
ing arguments (hyperparameters) were adjusted during the fine-tuning process.
The key hyperparameters and their adjustments are detailed below:

• Step 1: Learning Rate - Experimented with different learning rates.
Initially, a learning rate of 5× 10−5 was used, but this was later reduced
to 2× 10−5 to allow for more fine-grained learning as training progressed.

• Step 2: Batch Size - Adjusted the batch size to improve gradient up-
dates. A batch size of 16 was found to be effective for striking a balance
between computational efficiency and model stability.

• Step 3: Epochs - Increased the number of epochs from 3 to 5 based
on early stopping criteria, ensuring the model had enough iterations to
converge without overfitting.

• Step 4: Warmup Steps - Set warmup steps to 10% of total steps to
ensure the learning rate increased gradually, preventing large updates early
in training.

• Step 5: Weight Decay - Applied a weight decay of 0.01 to reduce
overfitting by penalizing large weights in the model.

These adjustments were made iteratively, depending on model performance
after each training run. Monitoring the loss curves and evaluation metrics helped
identify which hyperparameters required fine-tuning.

9 Conclusion

This document outlines the strategies employed to address various training is-
sues during the development of the BERT NER model. Adjusting hyperparam-
eters like learning rate, batch size, and weight decay, along with handling issues
like overfitting, underfitting, data leakage, and dataset repetition, helped ensure
robust model performance. By monitoring and fine-tuning these aspects, the
model was successfully trained to generalize well across unseen data.

5

	Introduction
	Model Architecture: BERT for NER
	Baseline Function for Metrics
	Training Issue 1: Overfitting
	Training Issue 2: Underfitting
	Training Issue 3: Data Leakage
	Training Issue 4: Repetitions in the Dataset
	Adjusting Training Arguments (Hyperparameters)
	Conclusion

