

Serialization Specification

Serialization Specification
VERSION 0.9

Serialization Specification Page 2 of 14

1 EXECUTIVE SUMMARY .. 3

2 PRINCIPLES .. 3

2.1 HIGH LEVEL GOALS .. 3
2.2 PROPOSED DESIGN REFERENCE POINT ... 3

3 OVERVIEW ... 4

4 PROPOSED CHANGES .. 4

4.1 INCLUDE MODEL, VERSION AND TYPE IN TOP LEVEL JSON .. 4
4.2 INCLUDE TYPE WHEN REQUIRED ... 5
4.3 TYPES WITH META .. 5
4.4 REFERENCING MODEL .. 6

4.4.1 Global/External References ..6
4.4.2 Scoped references .. 7
4.4.3 Scheme ... 9

5 PROCESSING .. 10

5.1 GENERATION ..10
5.1.1 @key and @ref .. 10
5.1.2 @key:external and @ref:external .. 10
5.1.3 Null values ... 10

5.2 INGESTION ..10
5.2.1 Null values ... 10

5.3 VALIDATION..10
5.3.1 Deserialization and Validation .. 11
5.3.2 Validation and Serialization ... 11

5.4 ERROR AND WARNING REPORTING ...12

6 EXAMPLES .. 12

7 APPENDIX... 13

7.1 JSONPATH ..13
7.2 BACKWARDS COMPATIBILITY ...13
7.3 REFERENCES ...14

8 AUTHORS ... 14

Serialization Specification Page 3 of 14

1 Executive Summary

This document describes planned changes to the standards for JSON serialization of
Rune defined CDM objects. The new format will include all relevant object
information and improve efficiency, readability, maintainability, and interoperability.

2 Principles

Principles of the design.

2.1 High level Goals

• interoperability: users of the same version of the model should be able to

exchange data regardless of their programming language

• completeness: ability to represent the entire model

• readibility: serialized data should be human readable

• compactness: serialized data should be as compact as possible

2.2 Proposed design reference point

An ordered proposed list of principles to serve as reference when evaluating
serialization design alternatives

• object generation: serialized data should facilitate creation of Rune defined
objects including enabling the "language's" polymorphic inheritance

• model conformity: to the fullest extent possible, the serialized data should

directly conform to the model. The reader has no obligation to keep fields that
it does not recognize

• error reporting: report all failures

• atomic types serialisation: to the extent possible, basic data types such as

dates, times and others should be serialised according to well established
standards/formats as for example ISO.

Out of scope

• cross major version support: this design does not address enabling
serialization to support transformation across breaking changes

Serialization Specification Page 4 of 14

Some of the above may not be absolute and the selected design may need to make
compromises on the extent to which it meets the principles.

3 Overview

The following table illustrates all the proposed special attributes that will be provided
as part of this initiative. Please refer to the Proposed Changes section for more
details of where and how they are used.

New Example
Model
Syntax Specification

@model "@model": "cdm" N/A See 4.1

@version "@version": "1.2.3" N/A See 4.1

@type "@type": "cdm.event.common.TradeState" N/A See 4.1

@data "@data": "attribute-data" See 4.3 See 4.3

@key "@key": "abcd1234" See 4.4.1.1 See 4.4.1.1

@ref "@ref": "abcd1234" See 4.4.1.2 See 4.4.1.2

@key:external "@key:external": "my-external-key" See 4.4.1.1 See 4.4.1.1

@ref:external "@ref:external": "my-external-key" See 4.4.1.2 See 4.4.1.2

@key:scoped "@key:scoped": "my-scoped-key" See 4.4.2.1 See 4.4.2.1

@ref:scoped "@ref:scoped": "my-scoped-key" See 4.4.2.2 See 4.4.2.2

@scheme "@scheme": "http://www.fpml.org/coding-
scheme/external/iso17442"

See 4.4.3 See 4.4.3

The Examples section contains illustrations of all these new special attributes.

4 Proposed Changes
4.1 Include Model, Version and Type in Top level JSON

The serialized form will contain the model, version and fully qualified type name.
These will always appear at the top of the JSON.

New Example Desc
@model "@model": "cdm" This is the short name for the

model, as defined in a config
file.

@version "@version": "1.2.3" This is the release of the
model, as defined by the
GitHub Release

@type "@type":
"cdm.event.common.TradeState"

This is formatted as the
namespace followed by the
type name in the CDM with
the case matching the model
(AKA "Fully Qualified Type
Name")

https://github.com/finos/common-domain-model/blob/master/rosetta-source/src/main/resources/rosetta-config.yml
https://github.com/finos/common-domain-model/blob/master/rosetta-source/src/main/resources/rosetta-config.yml
https://github.com/finos/common-domain-model/releases

Serialization Specification Page 5 of 14

{
 "@model": "cdm",
 "@version": "1.2.3",
 "@type": "cdm.event.common.TradeState"
}

4.2 Include Type when required

When required, for example when a Choice type or Base class is used as an attribute,
serialization will include @type to determine the subclass/choice.

{
 "Payout": {
 "@type": "cdm.event.common.InterestRatePayout"
 }
}

4.3 Types with meta

The serialized form will reflect that any attribute with a meta annotation (regardless
of cardinality or type i.e. basic, complex or enum) will ALWAYS be an object.

This enables consistency, making it easier to understand the serialized format as we
will have the same serialization rules for all types i.e.:

• Single cardinality basic types
• Multi cardinality basic types
• Single cardinality complex types
• Multi cardinality complex types
• Single cardinality enumerations
• Multi cardinality enumerations

For basic types and enumerations this will mean the serialized form would have an
additional wrapper, regardless of whether the meta is included in the data. Where
required, the actual data (currently held in an additional "value" attribute) will now
be included in an @data attribute.

Rune Definition

type Trade:
 tradeDate date (1..1)
 [metadata id]

Existing

 "trade": {
 "tradeDate": {
 "value": "2017-12-18",
 "meta": {
 "globalKey": "3f0b12"
 }

Serialization Specification Page 6 of 14

 }
 }

New

 "trade": {
 "tradeDate": {
 "@key": "3f0b12",
 "@data": "2017-12-18"
 }
 }

4.4 Referencing Model

The referencing mechanism in the Rune definitions of CDM will not change in this
phase but the keywords used for keys and references will be made consistent and
easier to understand.

Existing Serialised Key / Reference New Serialised Key / Reference

globalKey / globalReference @key / @ref

location, scope / address, scope @key:scoped / @ref:scoped

externalKey / externalReference @key:external / @ref:external

NOTE 1: Where a key is required for a basic type the id annotation is used instead of
key i.e. [metadata id] instead of [metadata key]. Both id and key annotations
will result in @key being put into the serialized form.

NOTE 2: The location, address and scope annotations will be enhanced to now all
converge on the use of @key:scoped and @ref:scoped. The external keys and refs
(@key:external and @ref:external) will remain for now, but may also be able to
be replaced by @key and @ref in the future. Serialization needs to support existing
behaviour, whilst paving a way forward so all Rune referencing mechanisms can be
unified.

4.4.1 Global/External References

References and external references will follow the structure and naming in the model.

In the default implementation @key will continue to be a generated hash (as
globalKey is now) which is intended to be an identifier unique within the document.
However, the implementation of globalKey/@key (i.e. how it is generated) can be
overridden by the user application.

The external references i.e. externalKey/@key:external are user defined data,
from another source.

Serialization is just taking the data in these special attributes, not defining it i.e. the
content of @key and @key:external is outside the scope of serialization.

Serialization Specification Page 7 of 14

4.4.1.1 Global key

Existing

 "party": {
 "meta": {
 "globalKey": "b6bdbfc2",
 "externalKey": "party1"
 },
 "name": "Party A"
 }

New

 "party": {
 "@key": "b6bdbfc2",
 "@key:external": "party1",
 "name": "Party A"
 }

4.4.1.2 Global reference

Existing

 "partyReference": {
 "meta": {
 "globalReference": "b6bdbfc2",
 "externalReference": "party1"
 }
 }

New

 "partyReference": {
 "@ref": "b6bdbfc2",
 "@ref:external": "party1"
 }

4.4.2 Scoped references

Scoped references will also follow the structure in the model, but will use
@key:scoped and @ref:scoped instead of their current names.

Scoped references allow specific sections of a document to be referenced. Currently
the supported scoped references are:

• location - Specifies this is the target of an internal reference i.e. this is the
key @key:scoped

• address - Specifies that this is an internal reference to an object that appears
elsewhere i.e. this is the reference @ref:scoped

The scope annotation allows the scope of the reference to be defined e.g. to a
specific type like TradeLot. However, currently the only scope available is DOCUMENT.
This means the scope annotation keyword is not required.

Serialization Specification Page 8 of 14

More information on scoped references can be found in the Rune documentation
here

4.4.2.1 Location (key)

Rune Definition

type PriceQuantity:
 quantity QuantitySchedule (0..*)
 [metadata location]

type QuantitySchedule:
 value number (0..1)
 unit UnitType (0..1)

type UnitType:
 financialUnit FinancialUnitEnum (0..1)

enum FinancialUnitEnum:
 Share

Existing

 "quantity": [{
 "value": {
 "value": 150000,
 "unit": {
 "financialUnit": "Share"
 }
 },
 "meta": {
 "location": [{
 "scope": "DOCUMENT",
 "value": "quantity-9"
 }]
 }
 }]

New

 "quantity": [
 {
 "@key:scoped": "quantity-9",
 "value": 150000,
 "unit": {
 "financialUnit": "Share"
 }
 }
]

4.4.2.2 Address (reference)

Existing

https://docs.rosetta-technology.io/rosetta/rosetta-dsl/rune-modelling-component/#address-and-location-reference

Serialization Specification Page 9 of 14

 "priceQuantity": {
 "quantitySchedule": {
 "address": {
 "scope": "DOCUMENT",
 "value": "quantity-1"
 }
 }
 }

New

 "priceQuantity": {
 "quantitySchedule": {
 "@ref:scoped": "quantity-1"
 }
 }

4.4.3 Scheme

Scheme gives control over the set of values that an attribute can take, without having
to define this attribute as an enumeration in the model.

4.4.3.1 Single cardinality attribute with scheme

Existing

 "issuer": {
 "value": "54930084UKLVMY22DS16",
 "meta": {
 "scheme": "http://www.fpml.org/coding-scheme/external/iso17442"
 }
 }

New

 "issuer": {
 "@scheme": "http://www.fpml.org/coding-scheme/external/iso17442",
 "@data": "54930084UKLVMY22DS16"
 }

4.4.3.2 Multiple cardinality (List) attribute, some with scheme

 "issuer": [
 {
 "@scheme": "http://www.fpml.org/coding-scheme/external/iso17442",
 "@data": "54930084UKLVMY22DS16"
 },
 {
 "@data": "54930084UKLVMY2R36YY"
 }
]

Serialization Specification Page 10 of 14

5 Processing

The design includes additional enhancements intended to improve the generation and
ingestion of the serialized form.

5.1 Generation

These details pertain to how the serialized form is to be generated i.e. the process of
serialization.

5.1.1 @key and @ref

If @key is not referenced by an @ref then it will not be included in the serialized form.

This will remove clutter and make the referencing provided by @key/@ref have more
value and be easier to use.

5.1.2 @key:external and @ref:external

The @key:external and @ref:external are user defined and will ALWAYS be
included if defined.

This means it will be possible to have external keys that do not have a corresponding
reference, and vice-versa.

5.1.3 Null values

If a value is null then the attribute will not get written out.

If an array is null then it will also not get written out.

5.2 Ingestion

These details pertain to how the serialized form is to be ingested i.e. the process of
deserialization.

5.2.1 Null values

When a null value is encountered it will be ignored, it will not be processed.

Null arrays will also be ignored.

5.3 Validation

Principles

• Follow the Robustness Principle: "be conservative in what you do, be liberal in
what you accept from others. It is often reworded as: be conservative in what
you send, be liberal in what you accept."

• Validation assumes that model is valid.

Validation Process

1. Check that the string is valid

https://en.wikipedia.org/wiki/Robustness_principle

Serialization Specification Page 11 of 14

2. Check that the string decodes to JSON; and
3. Check that the specified CDM type can be built from the JSON with three

levels of validation:
– The structure is valid
– The types match the model definition
– All relevant constraints are met

5.3.1 Deserialization and Validation

Deserialization will provide a warning and discard any attributes that do not conform
to the model.

By default, input data must conform to the constraints a model places on attribute
values if and when those constraints exist. There will be a configuration option to
relax this requirement in a manner which preserves the Robustness Principle.

The current process either fails (Python) or does not give a warning (Java) when it
finds non-conforming attributes.

5.3.2 Validation and Serialization

Following the Robustness Principle to enable interoperability, by default an entity
must be valid prior to serialization.

Since the current process can be less strict, there will be a configuration option to
relax this constraint. This option will be marked as deprecated in a timeframe TBD.

https://www.w3schools.com/js/js_json_datatypes.asp

Serialization Specification Page 12 of 14

5.4 Error and Warning Reporting

Errors and warnings from serialization/deserialization will be logged.

6 Examples

An example of a dummy Rosetta structure that includes the meta and referencing
described in the previous sections is provided below.

An example of the JSON that corresponds to the structure is then expressed to help
illustrate how the serialized version would look.

Rosetta format

type Trade:
 party Party (1..*)
 tradeId string (1..1)
 [metadata id]
 links Link (1..1)
 primaryPartyReference Party (1..1)
 [metadata reference]

type Link:
 tradeId string (1..*)
 [metadata reference]

type Party:
 [metadata key]
 name string (1..1)
 partyId string (1..1)
 [metadata scheme]
 issuers string (1..*)
 [metadata scheme]

Proposed Serialized JSON format

{
 "@model": "cdm",
 "@version": "1.2.3",
 "@type": "cdm.event.common.TradeState",
 "tradeId": {
 "@key": "gfkldd3k",
 "@data": "123456"
 },
 "links": {
 "tradeId": [
 {
 "@ref": "gfkldd3k"
 },
 {
 "@data": "99999"
 }
]

Serialization Specification Page 13 of 14

 },
 "party": [
 {
 "@key": "b6bdbfc2",
 "@key:external": "party1",
 "name": "ISLA",
 "partyId": {
 "@data": "999"
 },
 "issuers": [
 {
 "@data": "REGnosys"
 },
 {
 "@data": "FTA",
 "@scheme": "ISO999"
 }
]
 }
],
 "primaryPartyReference": {
 "@ref": "b6bdbfc2",
 "@ref:external": "party1"
 }
}

7 Appendix

Supporting and reference information.

7.1 JSONPath

JSONPath allows navigation through a JSON file. The serialized format that we are
proposing here was tested against JSONPath. It was found that in all cases except for
one JSONPath could successful traverse our proposed JSON.

The exception case was if a special item was at the top level of the document. In this
instance JSONPath failed to locate our item. This was found to be an issue with the
JSONPath specification/implementation and had already been reported (see Issue
comment or the actual error logs here and here)

7.2 Backwards compatibility

As a reference, we are using the terminology defined here: Extending and Versioning
Languages: Terminology

Key points from that document that relate to our context are:

• A language change is backwards compatible if consumers of the revised
language can correctly process all instances of the unrevised language. A
software example is a word processor at version 5 being able to read and

https://github.com/chrisisla/cdm-serialisation/issues/6#issuecomment-2407595405
https://github.com/chrisisla/cdm-serialisation/issues/6#issuecomment-2407595405
https://github.com/ashphy/jsonpath-online-evaluator/issues/14
https://github.com/ashphy/jsonpath-online-evaluator/issues/45
https://www.w3.org/2001/tag/doc/versioning
https://www.w3.org/2001/tag/doc/versioning

Serialization Specification Page 14 of 14

process version 4 documents. A schema example is a schema at version 5
being able to validate version 4 documents.

• A language change is forwards compatible if consumers of the unrevised
language can correctly process all instances of the revised language. An
example is a word processing software at version 4 being able to read and
process version 5 documents. A schema example is a schema at version 4
being able to validate version 5 documents.

7.3 References

For more information about the CDM please go to the Common Domain Model
microsite hosted by FINOS here: https://www.finos.org/common-domain-model

For more information about the work being done by ISLA please go to the main
International Securities Lending Association website here: https://www.islaemea.org/

8 Authors
This document was authored by:

• Hugo Hills, REGnosys
• Plamen Neykov, CLOUDRISK
• Minesh Patel, REGnosys
• Jason Polis, ISDA
• Chris Rayner, ISLA
• Daniel Schwartz, FT Advisory

https://www.finos.org/common-domain-model
https://www.islaemea.org/

