
Practical Disaggregated Cache
for Apache DataFusion

Xiangpeng Hao

About Me

• 4th PhD@Wisconsin-Madison

• Study Database/Storage systems

• Build high performance/low level

systems

Disaggregated cache

To not pushdown
High network traffic

Cache ComputeObject store

Should I pushdown
predicate here?

To pushdown
CPU is overwhelmed

SplitSQL: Pushdown Done Right

Cache Compute

SQL
(compute) OutputCachedSQL

(cache) FilterObject store

Lightweight predicate
evaluations

Result

SELECT
"SearchPhrase",
MIN("URL"),
MIN("Title"),
COUNT(*) AS c, COUNT(DISTINCT
"UserID")
FROM hits
WHERE
"Title" LIKE '%Google%’
AND
"URL" NOT LIKE '%.google.%' AND
"SearchPhrase" <> ’’
GROUP BY "SearchPhrase" ORDER BY c
DESC LIMIT 10;

Cache ComputeObject store

Cache Arrow
Cache Parquet

SplitSQL

Low memory
consumption Low query

latency

Outline

Part 1: Disaggregated cache is the future

Part 2: To Pushdown or not to pushdown?

Part 3: SplitSQL: pushdown down right

Part 4: Evaluations

Data lake architecture

Object store

Compute

Compute

Compute

SELECT ”URL”, ”UserID"

SELECT
"SearchPhrase","URL”…

SELECT
”UserID",”SearchPhrase”…

Diskless Serverless User query

Modern architecture

Object store is new disk

Lambda/EC2 is new CPU

Where to cache data?

Object store

Compute

Compute

Compute

Option 1: private cache

Object store

Compute

Compute

Compute

Cache

Cache

Cache

Simple

Duplicate copies

Can’t scale independently

Low resource utilization

Option 2: distributed cache

Object store

Compute

Compute

Compute

C
ache

Complex design

Single copy

Can’t scale independently

High resource utilization

Snowflake

Option 3: disaggregated cache

Object store

Compute

Clean architecture

Single copy

Scale independently

High resource utilization

Compute

Compute

Cache

Why not popular?

Outline

Part 1: Disaggregated cache is the future

Part 2: To Pushdown or not to pushdown?

Part 3: SplitSQL: pushdown down right

Part 4: Evaluations

Disaggregate cache cause high network traffic

Large files send over network!

Object store

Compute

Compute

Compute

Cache
Large files

Queries filtered out most data

Object
store Compute

Filter

Filter

Filter

Predicates

Aggregate

Predicates

Sort

Join

JoinMemory/
File

Read

Step 1: large files
send over network

Step 2: most data
dropped here

Cache

Evaluate predicates on cache

Object
store Compute

Filter

Filter

Predicates

Sort

Join

Join
Memory

/
File

Read

Cache

Predicates

Aggregate

Filter

Lightweight operators Compute-intensive

This is predicate push down to cache

IBM Netezza

Push down here
SplitSQL

AWS S3-Select

Cache ComputeObject store

CPUSmart
{SSD, NIC, FPGA}

Object store Compute

Challenge: cache server is on fire !

Cache

Compute

Compute

…

Simple filters can be
expensive to evaluate

Tried our best to push
down simple filters

Outline

Part 1: Disaggregated cache is the future

Part 2: To Pushdown or not to pushdown?

Part 3: SplitSQL: pushdown down right

Part 4: Evaluations

SplitSQL: Pushdown Done Right

Cache Compute

SQL
(compute) OutputCachedSQL

(cache) FilterObject store

Scale compute:
More compute nodes,
same cache node

Scale cache:
Provision larger memory,
attach larger elastic storage

Example

Cache Compute

SQL
(compute) OutputCachedSQL

(cache) FilterObject store

SELECT DISTINCT "URL"
FROM hits WHERE
"URL" LIKE '%google%'

SELECT DISTINCT "URL"
FROM cache

SELECT "URL"
FROM hits WHERE
"URL" LIKE '%google%'

SplitSQL

How not to
overwhelm my CPU?

Simple filters can be expensive to evaluate

Parquet -> Arrow

Evaluate filters

Decompress Parquet

SELECT "URL”
FROM hits
WHERE "URL" LIKE '%google%'

Decoding overhead
(78%)

Useful work
(22%)

Predicate push down doesn’t like Parquet
Parquet is the industry standard

• Rich features, great ecosystem
• Battle tested
• High compression ratio
• De facto file format for big data

Cache ComputeObject store

Decoding Parquet is CPU-intensive
• Decompression
• Decoding metadata
• Decoding data

Decoding is a
problem for me!

Decoding is not a
problem for me!

Faster decoding is All-You-Need

Option 1: switch to a different file format
• Small win, big lose – lose all other nice Parquet features
• Significant changes to the ecosystem
• Slow adoption (e.g., >10 years)

Cache ComputeObject store

Start with a
different format! Nimble

Vortex

Faster decoding is All-You-Need

Option 1: switch to a customized file format
• Small win, big lose – lose all other nice Parquet features
• Significant changes to the ecosystem
• Slow adoption (e.g., >10 years)

Option 2: cache decoded values (e.g., cache Arrow)

Cache ComputeObject store

Cache Arrow here!

Cache Arrow speeds up some queries

Small improvements on
compute-intensive queries

4x improvements for
filter-dominated queries

But at 4x memory cost

4x higher memory cost
across the board

Faster decoding is All-You-Need

Option 1: switch to a customized file format
• Small win, big lose – lose all other nice Parquet features
• Significant changes to the ecosystem
• Slow adoption (e.g., >10 years)

Option 2: cache decoded values (e.g., cache Arrow)
• Performance improvement varies
• 4x more memory usage

We need: cache-specific file format
• Transparent – what happens in cache, stays in cache
• Unlocks new opportunities

Cache-specific format?

• Leverage modern encoding algorithms
• SIMD friendly
• Fine-grained decoding – decode only relevant data
• Evaluate predicates on encoded data

• Make modern trade-offs
• IO time vs decode time
• Compression ratio vs access cost

Cache ComputeObject store

Cache-specific
format here!

Example: Encode String arrays

Example: Encode String arrays

Integer encoding here!

Shared across
multiple arrays

Easy selective
decoding

Evaluate predicates on encoded data

How find strings that
contains “DataFusion”? 1. Encode the needle – “ad”

2. Find the index in values – 2

2. Return the index in codes

Find ”Apache DataFusion”

Evaluate predicates on partially encoded data

1. Decode the values

2. Find the index in values – 2

2. Return the index in codes

Find contains ”DataFusion”

Partial decoding
Apply filters along the
decoding path

Random access for late-materialization

Decode only the necessary

SplitSQL: Practical Disaggregated Cache

Cache Compute

SQL
(compute) OutputCachedSQL

(cache) FilterObject store

Reduce decoding overhead
1. Re-encode Parquet
2. Operate on encoded values
3. Late-materialization

Outline

Part 1: Disaggregated cache is the future

Part 2: To Pushdown or not to pushdown?

Part 3: SplitSQL: pushdown down right

Part 4: Evaluations

Evaluations – Q21

SELECT
"SearchPhrase", MIN("URL"),
COUNT(*) AS c
FROM hits
WHERE "URL" LIKE '%google%’
AND "SearchPhrase" <> ''
GROUP BY "SearchPhrase"
ORDER BY c DESC LIMIT 10;

Even faster than
caching Arrow

Low memory
consumption

Cache ComputeObject store

Cache Arrow
Cache Parquet

SplitSQL

Evaluations – Q22

SELECT
"SearchPhrase",
MIN("URL"),
MIN("Title"),
COUNT(*) AS c, COUNT(DISTINCT
"UserID")
FROM hits
WHERE
"Title" LIKE '%Google%’
AND
"URL" NOT LIKE '%.google.%' AND
"SearchPhrase" <> ’’
GROUP BY "SearchPhrase" ORDER BY c
DESC LIMIT 10;

Cache ComputeObject store

Cache Arrow
Cache Parquet

SplitSQL

Evaluations – Q27

SELECT
"CounterID", AVG(length("URL")) AS
l, COUNT(*) AS c
FROM hits
WHERE "URL" <> ’’
GROUP BY "CounterID" HAVING
COUNT(*) > 100000 ORDER BY l
DESC
LIMIT 25;

SELECT "CounterID", "URL"
FROM "hits"
WHERE "URL" <> ''

Cache ComputeObject store

SplitSQL (local)SplitSQL

Pushdown doesn’t help
reducing network traffic

Implementation in DataFusion

SELECT DISTINCT "URL"
FROM hits WHERE
"URL" LIKE '%google%'

Scan

Filter

Aggregate

Output

Logical Plan

Scan

Filter

Aggregate

Output

Cache table

Cache table

Aggregate

Output

Cache table

Compute server

Scan

Filter

Cache server

Cache table
Send to

Easy integration to DataFusion universe

10 loc change

Sponsor of
this work!

Conclusions & Future work

Even lower network traffic
• For high-cardinality queries (Q27)
• Aggregate and join push down

Even faster decoding
• Storage-aware encodings – different

encodings for memory, SSD, HDD

Cache Compute

SQL
(compute) OutputCachedSQL

(cache) FilterObject store

Disaggregated
• Independently scale
• Well-suited for query with filters

Practical
• Low CPU overhead
• Compatible with FDAP ecosystem
• Works on commodity hardware

	Slide 1: Practical Disaggregated Cache for Apache DataFusion
	Slide 2: About Me
	Slide 3: Disaggregated cache
	Slide 4: SplitSQL: Pushdown Done Right
	Slide 5: Result
	Slide 6: Outline
	Slide 7: Data lake architecture
	Slide 8: Modern architecture
	Slide 9: Option 1: private cache
	Slide 10: Option 2: distributed cache
	Slide 11: Option 3: disaggregated cache
	Slide 12: Outline
	Slide 13: Disaggregate cache cause high network traffic
	Slide 14: Queries filtered out most data
	Slide 15: Evaluate predicates on cache
	Slide 16: This is predicate push down to cache
	Slide 17: Challenge: cache server is on fire 🔥!
	Slide 18: Outline
	Slide 19: SplitSQL: Pushdown Done Right
	Slide 20: Example
	Slide 21: Simple filters can be expensive to evaluate
	Slide 22: Predicate push down doesn’t like Parquet
	Slide 23: Faster decoding is All-You-Need
	Slide 24: Faster decoding is All-You-Need
	Slide 25: Cache Arrow speeds up some queries
	Slide 26: But at 4x memory cost
	Slide 27: Faster decoding is All-You-Need
	Slide 28: Cache-specific format?
	Slide 29: Example: Encode String arrays
	Slide 30: Example: Encode String arrays
	Slide 31: Evaluate predicates on encoded data
	Slide 32: Evaluate predicates on partially encoded data
	Slide 33: Random access for late-materialization
	Slide 34: SplitSQL: Practical Disaggregated Cache
	Slide 35: Outline
	Slide 36: Evaluations – Q21
	Slide 37: Evaluations – Q22
	Slide 38: Evaluations – Q27
	Slide 39: Implementation in DataFusion
	Slide 40: Easy integration to DataFusion universe
	Slide 41: Conclusions & Future work

