New DC Clustering and Effects on Tracking Efficiency

Tongtong Cao CLAS12 Software Meeting Aug 8, 2024

Introduction

- Some issues in DC clustering algorithms cause that some clusters are lost.
- New clustering attempts to retrieve real clusters, while not increasing too much extra noise clusters.
- About old DC clustering:
 - Local coordinates: x axis is for layers, and y axis is for wires
 - Firstly, clumps, comprised by hits in a continuous range of y/wire axis, are constructed
 - Then, a pruner is used to trim hits on clumps
 - Next, if hit distribution in a clump is complicated so that quality of linear fitting is failed, a splitter by algorithm of the Hough line transform is used to find all combos of hits, who are close to a straight line, so that clusters are constructed by the hit combos,.
 - Clusters are required to involve at least 4 layers

Issue 1: A bug in Splitter

- The bug is located at <u>https://github.com/JeffersonLab/coatjava/blob/</u> <u>development/reconstruction/dc/src/main/java/org/jlab/rec/dc/cluster/</u> ClusterCleanerUtilities.java#L174
- The bug causes that plenty of cluster candidates, distinguished by the splitter, are lost.

Issue 2: Too tight for # of layers in clusters >= 4

- Due to existence of dead wires, mis-killing of SNR and Al-denoising, and edge effects, some real hits do not exist, or are mis-killed.
- Such cases of clusters might be lost if clusters are required to involve at least 4 layers
- Solution:
 - Categorize clusters into two types: normal and exceptional
 - Layers in clusters >= 4 for normal clusters, and Layers in clusters >= 3 for exceptional clusters
 - Exceptional clusters could be such cases:
 - 1. First two (layers 1&2) or last two (layers 5&6) layers are lost
 - 2. One or more layers are skipped

Examples for exceptional clusters involving only 3 layers

Issue 3: Update OverlappingClusterResolver() Selection of overlapping clusters from splitter

- Cancel the requirement that slopes of overlapped clusters must be close.

Slope of clusters on TB tracks in local coordinates

Instead, from list of overlapped clusters, remove clusters whose absolute value of slope is out of tan(30⁰) for R1&R2.

Issue 3: Update OverlappingClusterResolver() Order of overlapping clusters

- In old clustering, overlapping clusters are ordered base on is chosen.
- However, there is no order for clusters with the same size. different orders of loop for finding of overlapping clusters.
- In new clustering, clusters with the same size are ordered overlapping clusters.

	Hit1_ID :	17	76	98 206	116	172	180	202	210	242	250
Two 6-hit clusters with 5 hits overlapped		200	270	290	302	514 707	517	517	525	534 474	540 77
1000		511	573	577	575	502	430	700	403	720	720
	i i	725	765	80/	975 812	955	861	882	980	882	030
from old clustering	i.	735	703	1000	1012	1026	1025	002	000	002	930
nom olu clustering.	ні+2 тр ·	970 11	772	1009	115	175	181	205	212	244	251
	HIC2_ID :	258	276	205	300	212	214	205	212	244	231
	i i	250	270	293	305	400	435	458	527	673	/.70
	· ·	518	5/8	561	573	502	433	70/	718	732	7/0
avgwire: 4/.8000 54.6250 35.285/ 43.5000 28.5000 44.0000 36.666/ 4/.3333 22.0000 25.0000		736	763	807	815	851	865	870	882	870	020
+ 28.000/ 80.000/ 28.000/ 32.3333 95.3333 95.0000 94.0000 42.0000 53.0000 62.8333	· · ·	073	00%	1009	1010	1028	1033	0/ /	002	0/7	727
+ 43.3333 03.3000 /0.4200 49.1429 33.3000 27.3000 80.3000 60.4200 29.000/ 32.3333	ні+3 тр ·	12	774	1000	120	173	182	20/	213	245	252
+ 75.4444 76.5666 71.5555 76.4286 55.6666 67.5666 76.7145 66.7145 25.2566 66.6667 $+$ 65.6667 89.6667 24.5666 30.3333 16.6660 26.5714 32.6000 32.5600 32.5000 67.6000	11103_10 :	256	273	207	305	315	313	204	326	240	232
+ 27.6667 28.7143 23.3333 32.2500 24.0000 45.0000	· ·	360	370	379	303	408	440	452	452	478	480
	+	513	545	564	574	594	606	701	715	731	738
	, +	738	761	803	810	852	862	881	879	881	03/
	·	977	995	1006	1012	1024	1031	001			/04
	Hit4 TD :	13	68	100	117	176	183	203	211	246	_1
	HIC4_ID :	_1	275	_1	_1	_1	315	203	324	240	330
		_1	372	381	308	496	430	459	457	_1	_1
		516	5/6	_1	576	501	607	702	720	728	_1
	·	_1	_1	800	811	854	871	873	881	873	035
	· ·	974	003	1010	1017	1023	1034	0/5	001	070	755
	Hit5 TD ·	16	75	102	110	174	179	296	209	_1	-1
	HICO_ID :	_1	274	_1	_1	_1	_1	311	325	331	338
	+	-1	375	380	397	405	437	451	459	-1	-1
		514	547	-1	577	-1	605	705	719	-1	-1
	+	_1	_1	802	813	853	863	886	873	872	937
	+	975	991	1011	1016	1027	-1	000			/0/
	Hit6 TD :	-1	71	103	118	177	178	207	214	-1	-1
	+	-1	272	_1	-1	_1	_1	316	322	329	343
	+	-1	374	382	394	410	438	460	451	-1	-1
	+	517	549	-1	578	-1	610	703	717	-1	_1
	+	_1	_1	808	814	856	864	-1	872	886	_1
	+	972	996	1007	1015	1025	_1	÷			-
	1979-51979-51979-51979-51979-51979-51979-519	,, <u> </u>		,	6	2020	-				

In old clustering, overlapping clusters are ordered base on cluster size, and the first cluster with the maximized size in the order list

However, there is no order for clusters with the same size. It causes that overlapping clusters with the same size could be chosen at

In new clustering, clusters with the same size are ordered based on linear fitting quality as the secondary priority for order of

Issue 4: Hits are shared by multiple clusters

The two banks are output from DC clustering. A cluster ID is assigned for a hit in HitBasedTrkg::Hits.

- For part of clusters, size of clusters in the cluster bank is larger than size of clusters which are constructed by hits in the hit bank according to cluster ID of hits.
- It means that some hits of some clusters are lost in clustering.
- The reason is that some hits are shared by two or even more clusters, but ID of cluster associated with a such hit is assigned to be ID of last cluster among hit-overlapping clusters, instead of IDs of all associated clusters.

HitBasedTrkg::Hits According to cluster ID of hits, cluster is constructed.

Effect of Issue4

- After clustering (AI prediction of cluster combos), hits • from the bank HitBasedTrkg::Hits are read into a map with key of cluster ID.
- Then, segment is recomposed with limit of cluster size \bullet for both conventional and AI-assisted tracking.
- Since information of cluster ID is lost for hit-overlapped clusters except the last cluster in the hit bank, hits shared with clusters are lost in recomposition except last hit-overlapped cluster.
- Further, since limit of cluster size, some clusters are lost in the following process after segment recomposition.
- Some of clusters with larger size are not lost, but some hits belong to them are missed.
- The issue affects both conventional tracking and AI- \bullet assisted tracking.

size of cluster vs. clusterInHitBank

How to Fix the Issue4?

- cluster ID, and add duplicated hits into HitBasedTrkg::Hits.
- Connection between HitBasedTrkg::Hits and DC::TDC is through id in called as indexTDC is added into HitBasedTrkg::Hits.
- In DC reconstruction and tracking, DC::TDC is input only for DC clustering, and HitBasedTrkg::Hits is output of DC clustering. With the above update, full hits, including original hits and duplicated hits, will enter the following process for reconstruction and tracking.
- updated.

• For hits shared with multiple clusters, duplicate them with different id and associated

HitBasedTrkg::Hits and index of DC::TDC. With addition of duplicated hits, a new item

Accordingly, ClusterFinder::findClumps() in PatternRec::RecomposeSegments() is

After Issue4 Fixing

×10³ 200

150

Exactly diagonal as expected

100

HitBasedTrkg::Hits According to cluster ID of hits, cluster is constructed.

Comparison of Clusters

10000 events

Not just 3-hit clusters are involved, but also other-size clusters are increased.

Comparison of AI-predicted DC Cluster Combos

10000 events

of Al-assisted HB tracks

1000 events

Before update

Fix bug in the splitter

Categorize clusters and set different limits for differe types of clusters

Update OverlappingClusterResolver() for selection overlapp clusters from splitter

Fix issue for hits sharing by clusters

	# of AIHB tracks	% of more tracks
	1899	
	1942	2.3%
ent	2014	6.1%
oed	2017	6.2%
	2091	10.1%

of Al-assisted TB tracks

1000 events

Before update

Fix bug in the splitter

Categorize clusters and set different limits for differe types of clusters

Update OverlappingClusterResolver() for selection overlapp clusters from splitter

Fix issue for hits sharing by clusters

	# of AITB tracks	% of more tracks
	1752	
	1781	1.7%
ent	1831	4.5%
oed	1832	4.6%
	1884	7.5%

Comparison of TB Tracks from Al-assisted Tracking

Tracking Efficiency for RGA In-bending

16

Tracking Efficiency for RGA Out-bending

current (nA)

17

Ratio of Event Reconstruction for RGA

Ratio = new clustering / old clustering

AI-denoising

out-bending

Efficiency = # of events for channel / # of events with electron

Efficiency for Physics Channels: In-bending New clustering Old clustering

19

Efficiency = # of events for channel / # of events with electron

Efficiency for Physics Channels: Out-bending New clustering

Old clustering

Discussion for Pruner

- The pruner is used to trim hit clump, but it is kind of rough. It could causes that real hits are trimmed, and further clusters are lost.
- In principle, the pruner could be cancelled since the splitter is powerful to handle complicated hit clumps.
- However, if the pruner is cancelled, too many clusters are constructed for some rare cases of complicated hit clumps. It brings trouble to AI model for cluster combo prediction.
- Gagik is working on development of a new AI model with new features. With the new AI model, the pruner will be further studied to determine if it should be canceled.

• Codes: https://github.com/JeffersonLab/coatjava/blob/development/reconstruction/dc/src/main/java/org/jlab/rec/dc/cluster/Cluster/ClusterCleanerUtilities.java#L750-L800

Summary

- With bug fixing and algorithm updating, new clustering further improves tracking efficiency.
- while reaches about -0.12%/ns for RGA in-bending.
- Recently, Gagik has been working on a new AI model for cluster combo and further improve tracking efficiency.
- model.

• Overall, effects for out-bending are much more significant than in-bending. Slope of tracking efficiency is better than -0.1%/ns for RGA out-bending,

prediction with new features. It is supposed to recover some missing tracks,

The pruner applied in clustering will be further investigated with the new AI

Backup Slides for Cancelling Pruner

Comparison of Clusters

10000 events

Not just 3-hit clusters are involved, but also other-size clusters are increased.

Comparison of AI-predicted DC Cluster Combos

10000 events

Strongly suggest to re-train AI model with new clustering.

Comparison of TB Tracks from Conventional Tracking

of HB tracks

1000 events	# of HB tracks	% of more tracks	# of AIHB tracks	% of more tracks
Before update	2072		1899	
Fix bug in the splitter	2142	3.4%	1942	2.3%
Categorize clusters and set different limits for different types of clusters	2346	13.2%	2014	6.1%
Update OverlappingClusterResolver() for selection overlapped clusters from splitter	2349	13.3%	2017	6.2%
Fix issue for hits sharing by clusters	2363	14.0%	2091	10.1%
Cancel pruner	2415	16.6%	2127	12.0%

of TB tracks

1000 events	# of TB tracks	% of more tracks	# of AITB tracks	% of more tracks
Before update	1870		1752	
Fix bug in the splitter	1934	3.4%	1781	1.7%
Categorize clusters and set different limits for different types of clusters	2090	11.8%	1831	4.5%
Update OverlappingClusterResolver() for selection overlapped clusters from splitter	2090	11.8%	1832	4.6%
Fix issue for hits sharing by clusters	2098	12.2%	1884	7.5%
Cancel pruner	2139	14.4%	1926	9.9%

