

MapFusion

Content
● The cache
● Bugfixes
● New cases
● Struct data flow

Cache
● In order to determine if an intermediate can be removed the whole

SDFG needs to be scanned.
● The old transformation scanned the full SDFG for every intermediate

on every fusing operation.
● The new one scans the SDFG once, computes all data that could not

be deleted and stores it.
● The cache is never invalidated over the lifetime of the fusion object.
● This is safe, as long as no new names are added, which is the case

for its use during auto optimize.
● However, it is a little bit different than the old version, so we could:

– Writing it into the change log and life with it.
– Making caching an opt-in behaviour (it should be activated inside auto

opt).

Bugfixes
● Now a list of fixes

mapfusion_test.py::test_offset_correction_scalar_read

Current version

Where it fails The top Map contains a a
nested Map that only partially
writes into B, i.e. B[:, 2:8].
The second Map only accesses
B[i, 3]. The current
implementation applies, passes
validation, but fails to compile.
For some reason it wants to
pass the full array (pointer) into
the Tasklet that only accepts a
scalar.

mapfusion_test.py::test_offset_correction_scalar_read

The new version:
As you can see the
read to the
intermediate is
now correct.
Although it still has
a size of 6.

mapfusion_test.py::test_inner_map_dependency_resolved

Current version Where it fails:
The transformation
applies, it creates an
Memlet and associates it
with the intermediate, it
created, but it does not
create a corresponding
AccessNode.
Note that here it is safe to
fuse, because the two
scalars, that are used
inside the Map scopes are
different. But the
transformation would also
apply, if both would refer
to the same data and
produce the same error.

mapfusion_test.py::test_inner_map_dependency_resolved

The new transformation
applies correctly.

In case both Map scopes
would refer to the same
data, it would not apply.
Note: In this situation
fusion would be safe, but
it might not be in general,
so the transformation
does nothing.

New version

mapfusion_test.py::test_fusion_intermediate_different_access

Initial state New version
Similar to the previous case but the
intermediate is explicitly there.
Important: The Memlet that
connects temp and the first
MapExit is associated to temp. The
current transformation fails to apply.
If we look why, we see that it picks
up the wrong subset (direction
issue) and then the data
dependency can not be met. If we
"fix" that (i.e. remove a special
case) it still fails. Now it complains
that temp has only one dimension.
If also fix that, i.e. add a dummy
dimension to it, then it complains
that the second Tasklet does not
have a .data attribute.
Thus it fails to handle this case.

mapfusion_test.py::test_fusion_dynamic_producer

The current
transformation does not
respect the dynamic
Memlets, of producers, it
ignores them and simply
merges the Maps
together. The correct
behaviour is to not fuse.
In the generated code,
the __out in the top
Tasklet will be replaced
with the intermediate
(__s0...), thus it will
only have a value if
__in1 < 0.5 holds
otherwise it will have an
undefined value.

Initial situation Current version:

mapfusion_test.py::test_fusion_intrinsic_memlet_direction

Initial state: Current version
The main difficulty here is that the
Memlet, that goes from t1 into the
MapExit of the most inner Map, does
not refer to T, the intermediate, but to
t1. The current transformation
applies and modifies this inner
Memlet such that it refers to the new
intermediate data and sets .subset
to [-__i1] and .other_subset to
[__i1, __i2, __i3]. This
causes a validation error.

A similar situation is also present the
the second Map, which is collapsed
for visibility.

mapfusion_test.py::test_fusion_intrinsic_memlet_direction

New version:

New Cases That Are Handled
● These are cases that were not handled before.

Thus the transformation did not apply.
● They are mostly due to a better handling of

intermediates that are needed somewhere else,
i.e. these can not simply be removed.

● NOTE: The original MapFusion can potentially
handle such cases as well.

mapfusion_test.py::test_fusion_shared

Initial state

The new transformation applies here, it needs
however two steps, see nest slide.

mapfusion_test.py::test_fusion_shared

Step 1 Step 2

mapfusion_test.py::test_interstate_fusion

Initial situation New version
The current transformation did not
perform the merge, because it picked
up that B was used in another state.
The new transformation will apply,
because it recreates B as a new
output of the fused Map.

mapfusion_test.py::test_fusion_different_global_accesses

Initial situation New version

A and B are both used as input and
output. The important thing is that
A is only accessed as A[i] while B
is accessed as B[i+1].
The current transformation does
not apply here, while the new does.

Note: If B would be accessed as
B[i] (or more generally in the
same style as A) then the current
transformation would apply as well.

mapfusion_test.py::test_fusion_dataflow_intermediate_2

Initial situation

As it can be seen, A is both used as input and output to the first
Map and serves as intermediate, i.e. is also input to the second
Map. The old transformation does not apply, but the new one
does.
However, besides the normal requirement of MapFusion, i.e. one
iteration of the first Map must produce everything that an iteration
of the second Map needs, the following must hold: The access of
A, in the first Map must be pointwise, i.e. every position that is
read must also be written to by an iteration. So if the first Map
would read A[9 – i] instead, then this is not satisfied anymore
and the transformation would not apply. Note that the constraint
on the intermediate would still be satisfied, as the first Map writes
A[i] and the second would still read A[i].
I am not sure, but I am pretty sure that such a Map is invalid and
is only valid in particular situations.

mapfusion_test.py::test_fusion_dataflow_intermediate_2

New version:

Strict Dataflow
The most controversial change is most likely the introduction of the "strict dataflow"
mode, which is on my default.
It started as a compatibility flag to work around some behaviour in DaCe. They are
mostly related to "shared intermediate nodes", i.e. intermediates that can not be
removed from the SDFG, because they are used somewhere else. See issue#1642.

It believe that it is related that some transformations do not carefully enough check some
data dependencies, for this let's look at an example (nest slide).

Strict data flow means that if an intermediate, is classified as a shared intermediate and
there is another AccessNode in the dataflow graph, that is reachable from the
intermediate itself, then the fusion is rejected.
Note, that if the usage is in another state, upstream the data flow or in a concurrent
dataflow graph (most likely invalid anyway), then this restriction does not apply.

mapfusion_test.py::test_fusion_dataflow_intermediate_downstream

There is another state where
T is stored into global data.

Initial state
The first T is the intermediate, but there
is another T, that is reachable from the
first one. If strict dataflow is enabled
then the transformation does not apply.
If it is disabled then it applies and
generates the SDFG on the right.

You see that T has become a sink node
of the first Map. But, it still appears,
downstream the dataflow graph as
output of the second Map.

This is (at least I think that) the
prototypical pattern that causes
problems in some transformations.
See also issue#1642.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

