标签(空格分隔): CASIA
-
使用MRCNN模型提取有用信息;
使用MRCNN模型对图片做预测,下面这个数字是使用一块GTX 1080跑一天处理的图片数(大概一秒1张半的样子);这个方法速度慢,但是基本上每天都可以有结果;
-
使用SSD进行目标检测;
下面这个结果是116/2565,大概可以检测到的信息比率是4.5%,约20ms处理一张;SSD的处理速度较快,但是有大部分图片会没有信息,有信息的话绝大多数是单目标;
图像分割 Fully Convolutional Networks for Semantic Segmentation (FCN) Mask R-CNN Fully Convolutional Instance-aware Semantic Segmentation(FCIS) FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation Learning Deconvolution Network for Semantic Segmentation Learning a Discriminative Feature Network for Semantic Segmentation
点云相关 Stereo R-CNN based 3D Object Detection for Autonomous Driving PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models
图卷积 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS Learning Convolutional Neural Networks for Graphs