-
Notifications
You must be signed in to change notification settings - Fork 3
/
demo_Brain1_Random.m
executable file
·276 lines (235 loc) · 8.6 KB
/
demo_Brain1_Random.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% This script is used to obtain the results in the paper
%%%% "Calibrationless Parallel MRI with Joint Total Variation
%%%% Regularization"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; close all;
rand('state',0); rand('state',0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load rawdata_brain;
im = ifft2c(raw_data);
I = sos(abs(im));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% input parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigma = 0.01; % data noise
alpha = 4e-2; beta = 4e-2; % regularization parameters
d = 4; %parameter to control sampling ratio d=3.45 for 33% d=4 for 25% d=4.4 for 20%
maxIter=50; %iteration number for CSSENSE, SPGL1 and JTVMRI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Preparing the data and operators
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% clear OMEGA A RR b bb;
%%%%% Prepare for reference image
m=256; n=m;
% [m,n] = size(I);
I=double(I);
I=imresize(I,[m,n]);
f=I(:);
coils = 8;
T=coils;
NormI = sumofsquare(f,1);
for t=1:T,
temp = im256(imresize(im(:,:,t),[m,n]));
F(:,:,t) = abs(temp);
end
[m n, T] = size(F); N = m*n; f=F(:); pn=m*n;
%%%%% Prepare for wavelet
DecLevel = 4;
wav = daubcqf(2);
WT = @(x) reshape(mdwt(reshape(x,m,n),wav,DecLevel),N,1);
W = @(x) reshape(midwt(reshape(x,m,n),wav,DecLevel),N,1);
Phi= A_operator(@(x) WT(x), @(x) W(x)); % notice Phi=WT
W2 = @(x) midwt(x,wav);WT2 = @(x) mdwt(x,wav);
Phi2= A_operator(@(x) WT2(x), @(x) W2(x)); % notice Phi=WT
%%%%% Prepare for sampling mask
samplingratio = 0;
for t=1:1,
[OMEGA{t}] = RandMask_rect(double(m/d),double(n/d),m,n);
[mask{t}] = RandMask_InverseTransfer(OMEGA{t},m,n);
mask{t}(m/2-14:m/2+15,n/2-14:n/2+15) = ones(30,30); % Why? The central white box?
OMEGA{t} = find(fftshift(mask{t})==1);
k(t) = 2*length(OMEGA{t})+1;
samplingratio = samplingratio + length(OMEGA{t});
end
for t=2:T
[OMEGA{t}] = [OMEGA{1}];
[mask{t}] = [mask{1}];
k(t) = k(1);
end
samplingratio = samplingratio/(N);
figure;imshow(mask{1},[]);
for t=1:T,
start=1+sum(k(1:t-1)); stop=sum(k(1:t));
sz(t,:)=[start, stop, pn];
end
%%%%% Prepare for SPGL1
for t=1:T,
f2=F(:,:, t); x0((t-1)*pn+1:t*pn,1)=WT(f2(:));
f0((t-1)*pn+1:t*pn,1)=f2(:);
R{t} = @(x) A_fhp_rect(x, OMEGA{t}, m, n);
RT{t} = @(x) At_fhp_rect(x, OMEGA{t}, m, n);
AO{t} = @(x) R{t}(W(x)); AOT{t} = @(x) WT(RT{t}(x));
A{t} = A_operator(@(x) AO{t}(x), @(x) AOT{t}(x));
sigma = 0.01; noise{t} = sigma*randn(k(t),1);
start=sz(t,1); stop=sz(t,2);
b(start:stop,1) = A{t}* x0((t-1)*pn+1:t*pn,1)+ noise{t};
end
%%%%% Prepare for JTV and CSSENSE
for t=1:T,
f2=F(:,:, t); ff0(:,t)=f2(:); xs(:,t)=WT(ff0(:,t));
RR{t} = A_operator(@(x) R{t}(x), @(x) RT{t}(x));
bb{t} = RR{t}*ff0(:,t) + noise{t};
data = zeros(m,n);data(1,1) = bb{t}(1); KK = length(bb{t});
data(OMEGA{t}) = bb{t}(2:(KK+1)/2) + i*bb{t}((KK+3)/2:KK);
im_poc{t} = real(ifft2(data))*sqrt(m*n);
end
%%%%% Prepare for GRAPPA and SPIRiT
DATA = fft2c(F);
MASK = mask{1};
[CalibSize, dcomp] = getCalibSize(MASK); % get size of calibration area from mask
DATA = DATA + sigma*randn(size(DATA)) + 1i*sigma*randn(size(DATA)) ; % multiply with sampling matrix
DATA = DATA.*repmat(MASK,[1,1,T]);
kSize = [5,5];
CalibTyk = 0.01;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% GRAPPA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% disp('performing traditional GRAPPA reconstruction');
% kCalib = crop(DATA,[CalibSize,T]);
% t0=cputime();
% res_grappa = GRAPPA(DATA,kCalib,kSize,CalibTyk);
% t1=cputime();
% im_grappa = ifft2c(res_grappa);
% im_grappa_err = im_grappa - F;
% im1 = sos(im_grappa);
% err1 = sos(im_grappa_err);
% im1=im256(im1);
%
% SNR(1) = snr(abs(im_grappa),F);
%
% Time(1) = t1-t0;
%
% fprintf('Iter_time = %.2fsec, snr = %f\n',Time(1), SNR(1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% SPIRiT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('performing SPIRiT')
kCalib = crop(DATA,[CalibSize,T]);
kernel = zeros([kSize,T,T]);
[AtA,] = corrMatrix(kCalib,kSize);
t0=cputime();
for t=1:T
kernel(:,:,:,t) = calibrate(AtA,kSize,T,t,CalibTyk);
end
GOP = SPIRiT(kernel, 'fft',[m,n]);
nIterCG = 10;
ReconTyk = 1e-5;
[res_cg, RELRES,RESVEC,info] = cgSPIRiT(DATA,GOP,nIterCG,ReconTyk, DATA,F);
t1=cputime();
im_cgspirit = ifft2c(res_cg);
im2 = sos(im_cgspirit);
err2 = sos(im_cgspirit-F);
im2=im256(im2);
SNR(2) = info.snr(end);
Time(2) = t1-t0;
fprintf('Iter_time = %.2fsec, snr = %f \n',Time(2), SNR(2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% CSSENSE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('calling the function CSSENSE.....\n');
for t=1:T,
FT = p2DFT(mask{t}, [m n], 1, 2);im_ori=F(:,:,t);
input1.alpha=alpha*2; % Weight for TV penalty
input1.beta=beta*2; % Weight for Transform L1 penalty
input1.maxIter=maxIter;input1.num=1;
input1.mask=mask{t}; input1.im_ori = im_ori;
noise2=randn(m, n); noise2(find(mask{t}==0))=0;
input1.data = FT*(im_ori)+sigma*noise2;
input1.im_dc=im_poc;
input1.Phi=Phi2;
out=sparseMRICg(input1); out1=out; %im1=abs(out.im_recover);
img(:,t)=out.im_recover(:);
snr0(:,t)=out.snrTrace; time0(:,t)=out.timeTrace;
end
im3=reshape(img, [m, n, T]);
err3 = sos(im3-F);
im3 = sos(im3);
im3=im256(im3);
mtsnr=MT_SNR(snr0, ff0);
SNR(3) = mtsnr(end);
time=sum(time0, 2);
Time(3) = time(end);
fprintf('Iter_time = %.2fsec, snr = %f, samp.ratio = %f \n',Time(3), SNR(3), samplingratio);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% CaLMMRI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('calling the function CaLMMRI.....\n');
opts = spgSetParms('verbosity',0);
opts.Phi=Phi;opts.f0=f0; opts.sz=sz; opts.iterations=maxIter;
nGroups = pn; temp=[1:pn]';temp=repmat(temp, [1, T]);groups=temp(:);
[x,r,g,info] = spg_mt(A,b,groups,0,opts);
for t=1:T
index = (1:N )+ (t-1)*N;
X4(:,t) = Phi'*x(index);
end
im4=reshape(X4, [m, n, T]);
err4 = sos(im4-F);
% SNR2(iter,4) = snr(abs(im4),F);
SNR(4)=info.Trace_SNR(end);
im4 = sumofsquare(X4,1);
im4 = reshape(im4,[m,n]);
Time(4) = info.Trace_Time(end);
fprintf('Iter_time = %.2fsec, snr = %f, samp.ratio = %f \n',Time(4), SNR(4), samplingratio);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% JTV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
input.f=f; input.xs=xs; input.n1=m;input.n2=n;
input.alpha=alpha;input.beta=beta;
input.Phi=Phi;input.L=1;
input.maxitr=5000;input.maxiitr= 5000;
input.stopCriterion=2;
input.tolA=1e-8; input.no=maxIter; %%%% Change no for different iteration numbers
input.l=-inf; input.u=inf;
input1=input;
input1.alpha=alpha*sqrt(T);input1.beta=beta*sqrt(T);
input1.funv=0;
fprintf('calling the function JTV.....\n');
input1=input;
input1.alpha=alpha*sqrt(T);input1.beta=beta*sqrt(T);
input1.funv=0;
out = JTVMRI(bb, RR, ff0, input1);
X5 = out.y;
im5=reshape(X5, [m, n, T]);
err5 = sos(im5-F);
SNR(5)=out.snr(end);
im5 = sumofsquare(X5,1);
Time(5) = out.xtime(end);
im5 = reshape(im5,[m,n]);
fprintf('Iter_time = %.2fsec, snr = %f, samp.ratio = %f \n',Time(5), SNR(5), samplingratio);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cx = 180;
cy =130;
NormI = reshape(NormI,[m,n]);
ims(:,:,1) = im256(I);
ims(:,:,2) = im1;
ims(:,:,3) = im2;
ims(:,:,4) = im3;
ims(:,:,5) = im4;
ims(:,:,6) = im5;
zoomedim = zoominim(ims,1,cx,cy); % zoom in
figure; hold on;
subplot(2,3,1); imshow(zoomedim(:,:,1),[]); title('Original');
subplot(2,3,2); imshow(zoomedim(:,:,2),[]); title('GRAPPA');
subplot(2,3,3); imshow(zoomedim(:,:,3),[]); title('CGSPIRiT');
subplot(2,3,4); imshow(zoomedim(:,:,4),[]); title('CSSENSE');
subplot(2,3,5); imshow(zoomedim(:,:,5),[]); title('CaLMMRI');
subplot(2,3,6); imshow(zoomedim(:,:,6),[]); title('Proposed');
th1 = 0;th2=30;
figure; hold on;
subplot(2,3,2); imshow(err1,[th1,th2]); title('GRAPPA');
subplot(2,3,3); imshow(err2,[th1,th2]); title('CGSPIRiT');
subplot(2,3,4); imshow(err3,[th1,th2]); title('CSSENSE');
subplot(2,3,5); imshow(err4,[th1,th2]); title('CaLMMRI');
subplot(2,3,6); imshow(err5,[th1,th2]); title('Proposed');