-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
482 lines (416 loc) · 17.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/env python3 -u
"""
Train a new molecular model on one or across multiple GPUs.
"""
import collections
import itertools
import math
import os
import random
import torch
from fairseq import distributed_utils, options, progress_bar, tasks, utils
from fairseq.data import iterators
from fairseq.meters import AverageMeter, StopwatchMeter
from fairseq.trainer import Trainer
def main(args):
if args.max_tokens is None:
args.max_tokens = 6000
print(args)
if torch.cuda.is_available() and not args.cpu:
torch.cuda.set_device(args.device_id)
torch.manual_seed(args.seed)
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(args)
# Load dataset splits.
load_dataset_splits(task, ['train', 'valid'])
# Build model and criterion.
model = task.build_model(args)
criterion = task.build_criterion(args)
print('| model {}, criterion {}'.format(args.arch,
criterion.__class__.__name__))
print('| num. model params: {}'.format(
sum(p.numel() for p in model.parameters())))
# Make a dummy batch to (i) warm the caching allocator and (ii) as a
# placeholder DistributedDataParallel when there's an uneven number of
# batches per worker.
max_positions = utils.resolve_max_positions(
task.max_positions(),
model.max_positions(),
)
dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens,
max_positions)
oom_batch = task.dataset('train').get_dummy_batch(1, max_positions)
# Build trainer
trainer = Trainer(args, task, model, criterion, dummy_batch, oom_batch)
# Init TensorBoardX SummaryWriter.
trainer.set_summary_writer(
log_dir=os.path.join(args.save_dir, args.log_file))
# trainer = Trainer(args, task, model, criterion, None)
print('| training on {} GPUs'.format(args.distributed_world_size))
print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
args.max_tokens,
args.max_sentences,
))
# Initialize dataloader
epoch_itr = task.get_batch_iterator(
dataset=task.dataset(args.train_subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=True,
required_batch_size_multiple=8,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
)
# Load the latest checkpoint if one is available
if not load_checkpoint(args, trainer, epoch_itr):
trainer.dummy_train_step([dummy_batch])
# Train until the learning rate gets too small
max_epoch = args.max_epoch or math.inf
max_update = args.max_update or math.inf
lr = trainer.get_lr()
train_meter = StopwatchMeter()
train_meter.start()
valid_losses = [None]
valid_subsets = args.valid_subset.split(',')
while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
) < max_update:
# train for one epoch
train(args, trainer, task, epoch_itr)
if epoch_itr.epoch % args.validate_interval == 0:
valid_losses = validate(args, trainer, task, epoch_itr,
valid_subsets)
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
# save checkpoint
if epoch_itr.epoch % args.save_interval == 0:
save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
train_meter.stop()
print('| done training in {:.1f} seconds'.format(train_meter.sum))
def train(args, trainer, task, epoch_itr):
"""Train the model for one epoch."""
# Update parameters every N batches
if epoch_itr.epoch <= len(args.update_freq):
update_freq = args.update_freq[epoch_itr.epoch - 1]
else:
update_freq = args.update_freq[-1]
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(fix_batches_to_gpus=args.fix_batches_to_gpus)
itr = iterators.GroupedIterator(itr, update_freq)
progress = progress_bar.build_progress_bar(
args,
itr,
epoch_itr.epoch,
no_progress_bar='simple',
)
extra_meters = collections.defaultdict(lambda: AverageMeter())
first_valid = args.valid_subset.split(',')[0]
max_update = args.max_update or math.inf
for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
log_output = trainer.train_step(samples)
if log_output is None:
continue
# log mid-epoch stats
stats = get_training_stats(trainer)
for k, v in log_output.items():
if k in [
'loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size'
]:
continue
if '_cls' in k or '_reg' in k or '_num' in k or '_acc' in k:
continue
extra_meters[k].update(v)
stats[k] = extra_meters[k].avg
for i in range(args.num_props):
loss_log_key = '%d_cls' % i if i in args.cls_index else '%d_reg' % i
sample_num = log_output.get('%d_num' % i, 0)
extra_meters[loss_log_key].update(
log_output.get(loss_log_key, 0), sample_num)
stats[loss_log_key] = extra_meters[loss_log_key].avg
if i in args.cls_index:
cls_acc_key = '%d_acc' % i
extra_meters[cls_acc_key].update(
log_output.get(cls_acc_key, 0), sample_num)
stats[cls_acc_key] = extra_meters[cls_acc_key].avg
progress.log(stats)
# ignore the first mini-batch in words-per-second calculation
if i == 0:
trainer.get_meter('wps').reset()
num_updates = trainer.get_num_updates()
# Write Tensorboard.
if num_updates % args.log_per_iter == 0:
for k, v in stats.items():
if sum([
1 for x in ['loss', 'ppl', 'ac', 'reg', 'lr'] if x in k
]) > 0:
trainer.summary_writer.scalar_summary(
'train/' + k, float(v), num_updates)
if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
valid_losses = validate(args, trainer, task, epoch_itr,
[first_valid])
save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
if num_updates >= max_update:
break
# log end-of-epoch stats
stats = get_training_stats(trainer)
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats)
# reset training meters
for k in [
'train_loss',
'train_nll_loss',
'wps',
'ups',
'wpb',
'bsz',
'gnorm',
'clip',
]:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
def get_training_stats(trainer):
stats = collections.OrderedDict()
stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
if trainer.get_meter('train_nll_loss').count > 0:
nll_loss = trainer.get_meter('train_nll_loss').avg
stats['nll_loss'] = '{:.3f}'.format(nll_loss)
else:
nll_loss = trainer.get_meter('train_loss').avg
stats['ppl'] = get_perplexity(nll_loss)
stats['wps'] = round(trainer.get_meter('wps').avg)
stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
stats['wpb'] = round(trainer.get_meter('wpb').avg)
stats['bsz'] = round(trainer.get_meter('bsz').avg)
stats['num_updates'] = trainer.get_num_updates()
stats['lr'] = trainer.get_lr()
stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
stats['oom'] = trainer.get_meter('oom').avg
if trainer.get_meter('loss_scale') is not None:
stats['loss_scale'] = '{:.3f}'.format(
trainer.get_meter('loss_scale').avg)
stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
return stats
def validate(args, trainer, task, epoch_itr, subsets):
"""Evaluate the model on the validation set(s) and return the losses."""
valid_losses = []
for subset in subsets:
# Initialize data iterator
itr = task.get_batch_iterator(
dataset=task.dataset(subset),
max_tokens=args.max_tokens,
max_sentences=args.max_sentences_valid,
max_positions=utils.resolve_max_positions(
task.max_positions(),
trainer.get_model().max_positions(),
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=8,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
progress = progress_bar.build_progress_bar(
args,
itr,
epoch_itr.epoch,
prefix='valid on \'{}\' subset'.format(subset),
no_progress_bar='simple')
# reset validation loss meters
for k in ['valid_loss', 'valid_nll_loss']:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
extra_meters = collections.defaultdict(lambda: AverageMeter())
for sample in progress:
log_output = trainer.valid_step(sample)
for k, v in log_output.items():
if k in [
'loss', 'nll_loss', 'ntokens', 'nsentences',
'sample_size'
]:
continue
if '_cls' in k or '_reg' in k or '_num' in k or '_acc' in k:
continue
extra_meters[k].update(v)
for i in range(args.num_props):
loss_log_key = '%d_cls' % i if i in args.cls_index else '%d_reg' % i
sample_num = log_output.get('%d_num' % i, 0)
extra_meters[loss_log_key].update(
log_output.get(loss_log_key, 0), sample_num)
if i in args.cls_index:
cls_acc_key = '%d_acc' % i
extra_meters[cls_acc_key].update(
log_output.get(cls_acc_key, 0), sample_num)
# log validation stats
stats = get_valid_stats(trainer)
for k, meter in extra_meters.items():
stats[k] = meter.avg
if trainer.get_num_updates() % args.log_per_iter == 0:
for k, v in stats.items():
if sum([
1 for x in ['loss', 'ppl', 'ac', 'reg', 'lr'] if x in k
]) > 0:
trainer.summary_writer.scalar_summary(
'val/' + k, float(v), trainer.get_num_updates())
progress.print(stats)
valid_losses.append(stats['valid_loss'])
return valid_losses
def get_valid_stats(trainer):
stats = collections.OrderedDict()
stats['valid_loss'] = trainer.get_meter('valid_loss').avg
if trainer.get_meter('valid_nll_loss').count > 0:
nll_loss = trainer.get_meter('valid_nll_loss').avg
stats['valid_nll_loss'] = nll_loss
else:
nll_loss = trainer.get_meter('valid_loss').avg
stats['valid_ppl'] = get_perplexity(nll_loss)
stats['num_updates'] = trainer.get_num_updates()
if hasattr(save_checkpoint, 'best'):
stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
return stats
def get_perplexity(loss):
try:
return '{:.2f}'.format(math.pow(2, loss))
except OverflowError:
return float('inf')
def save_checkpoint(args, trainer, epoch_itr, val_loss):
if args.no_save or not distributed_utils.is_master(args):
return
epoch = epoch_itr.epoch
end_of_epoch = epoch_itr.end_of_epoch()
updates = trainer.get_num_updates()
checkpoint_conds = collections.OrderedDict()
checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
end_of_epoch and not args.no_epoch_checkpoints and
epoch % args.save_interval == 0)
checkpoint_conds['checkpoint_{}_{}.pt'.format(
epoch, updates)] = (not end_of_epoch and
args.save_interval_updates > 0 and
updates % args.save_interval_updates == 0)
checkpoint_conds['checkpoint_best.pt'] = (
val_loss is not None and (not hasattr(save_checkpoint, 'best') or
val_loss < save_checkpoint.best))
checkpoint_conds[
'checkpoint_last.pt'] = True # keep this last so that it's a symlink
prev_best = getattr(save_checkpoint, 'best', val_loss)
if val_loss is not None:
save_checkpoint.best = min(val_loss, prev_best)
extra_state = {
'train_iterator': epoch_itr.state_dict(),
'val_loss': val_loss,
}
if hasattr(save_checkpoint, 'best'):
extra_state.update({'best': save_checkpoint.best})
checkpoints = [
os.path.join(args.save_dir, fn)
for fn, cond in checkpoint_conds.items()
if cond
]
if len(checkpoints) > 0:
for cp in checkpoints:
trainer.save_checkpoint(cp, extra_state)
if not end_of_epoch and args.keep_interval_updates > 0:
# remove old checkpoints; checkpoints are sorted in descending order
checkpoints = utils.checkpoint_paths(
args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
for old_chk in checkpoints[args.keep_interval_updates:]:
if os.path.lexists(old_chk):
os.remove(old_chk)
if args.keep_last_epochs > 0:
# remove old epoch checkpoints; checkpoints are sorted in descending order
checkpoints = utils.checkpoint_paths(
args.save_dir, pattern=r'checkpoint\d+\.pt')
for old_chk in checkpoints[args.keep_last_epochs:]:
if os.path.lexists(old_chk):
os.remove(old_chk)
def load_checkpoint(args, trainer, epoch_itr):
"""Load a checkpoint and replay dataloader to match."""
os.makedirs(args.save_dir, exist_ok=True)
checkpoint_path = os.path.join(args.save_dir, args.restore_file)
if os.path.isfile(checkpoint_path):
extra_state = trainer.load_checkpoint(
checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
eval(args.optimizer_overrides))
if extra_state is not None:
# replay train iterator to match checkpoint
epoch_itr.load_state_dict(extra_state['train_iterator'])
print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
trainer.lr_step(epoch_itr.epoch)
trainer.lr_step_update(trainer.get_num_updates())
if 'best' in extra_state:
save_checkpoint.best = extra_state['best']
return True
return False
def load_dataset_splits(task, splits):
for split in splits:
if split == 'train':
task.load_dataset(split, shuffle=True)
else:
task.load_dataset(split, shuffle=False)
def distributed_main(i, args):
import socket
args.device_id = i
if args.distributed_rank is None: # torch.multiprocessing.spawn
args.distributed_rank = i
args.distributed_rank = distributed_utils.distributed_init(args)
print('| initialized host {} as rank {}'.format(socket.gethostname(),
args.distributed_rank))
main(args)
def add_tensorboard_args(parser):
parser.add_argument(
'--tf-log-on',
default='True',
type=str,
metavar='BOOL',
help='If turn on the TensorBoard log.')
parser.add_argument(
'--log-file',
metavar='DIR',
default='tflog',
help='Path to TensorBoard log.')
parser.add_argument(
'--log-per-iter',
metavar='N',
default=200,
type=int,
help='Writer TensorBoard every iteration.')
return parser
if __name__ == '__main__':
parser = options.get_training_parser()
parser = add_tensorboard_args(parser)
args = options.parse_args_and_arch(parser)
args.tf_log_on = options.eval_bool(args.tf_log_on)
if args.distributed_init_method is None:
distributed_utils.infer_init_method(args)
if args.distributed_init_method is not None:
# distributed training
distributed_main(args.device_id, args)
elif args.distributed_world_size > 1:
# fallback for single node with multiple GPUs
port = random.randint(10000, 20000)
args.distributed_init_method = 'tcp://localhost:{port}'.format(
port=port)
args.distributed_rank = None # set based on device id
print('''| NOTE: you may get better performance with:
python -m torch.distributed.launch --nproc_per_node {ngpu} train.py {no_c10d}(...)
'''.format(
ngpu=args.distributed_world_size,
no_c10d=('--ddp-backend=no_c10d ' if max(args.update_freq) > 1 and
args.ddp_backend != 'no_c10d' else ''),
))
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args,),
nprocs=args.distributed_world_size,
)
else:
# single GPU training
main(args)