-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastro1.tex
341 lines (298 loc) · 11.5 KB
/
astro1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
% Created 2022-07-29 Fri 15:46
% Intended LaTeX compiler: xelatex
\documentclass[aspectratio=1610,xcolor={dvipsnames},hyperref={colorlinks,unicode,linkcolor=violet,anchorcolor=blueviolet,citecolor=YellowOrange,filecolor=black,urlcolor=Aquamarine}]{beamer}
\usepackage[dvipsnames]{xcolor}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{booktabs}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage[colorlinks,unicode,linkcolor=violet,anchorcolor=blueviolet,citecolor=YellowOrange,filecolor=black,urlcolor=Aquamarine]{hyperref}
\usepackage{listings}
\usepackage{etoolbox}
\useoutertheme{infolines}
\setbeamertemplate{frametitle}{%
\usebeamerfont{frametitle}\insertframetitle\strut%
\vskip-0\baselineskip%
\leaders\vrule width .95\paperwidth\vskip1pt%
\vskip0pt%
\nointerlineskip
}
%% T for footer
\setbeamercolor{footlinecolor}{fg=cyan,bg=green}
\setbeamercolor{author in head/foot}{fg=blue}
\setbeamertemplate{footline}{%
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.26\paperwidth,ht=2.25ex,dp=1ex,left]{author in head/foot}%
\hspace*{2ex}\usebeamerfont{author in head/foot} Dept. CSE, UT Arlington
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.50\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
\usebeamerfont{title in head/foot}Scalable Modeling \& Imaging \& Learning Lab (SMILE)
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.24\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
\usebeamerfont{date in head/foot}
\insertshortdate{}\hspace*{1em} % date
\insertframenumber/\inserttotalframenumber\hspace*{2ex}
\end{beamercolorbox}}%
\vskip0pt%
}
\usepackage{fontspec}
\usepackage[slantfont, boldfont]{xeCJK}
\setCJKmainfont{STFLGQKJF}
\usetheme{default}
\usefonttheme{serif}
\useinnertheme{circles}
\author{Nasy}
\date{Jul 29, 2022}
\title{Deep learning in Astronomy}
\hypersetup{
pdfauthor={Nasy},
pdftitle={Deep learning in Astronomy},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.0.50 (Org mode 9.5.4)},
pdflang={English}}
\usepackage[style=authortitle]{biblatex}
\addbibresource{~/.emacs.d/萚兮/旹/refs/ref.bib}
\begin{document}
\maketitle
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{Introduction}
\label{sec:org32177cb}
\begin{frame}[label={sec:org955d099}]{Astronomy}
A branch of science that covers the study and analysis of all extraterrestrial objects and their phenomena.
\begin{itemize}
\item Origin
\item Evolution
\item Functions
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgfbee5af}]{Astronomy -- Method History}
\begin{itemize}
\item Observational astronomy (OA)
\begin{itemize}
\item Human eyes
\item Telescopes
\item Radio
\item Micrometer (e.g. double stars)
\item Spectrograph (e.g. redshift)
\item Photoelectric photometry using Charge-coupled Device (CCD), which
can record the image nearly down to the level of individual
photons.
\item Neutrino astronomy
\item Gravitational wave
\end{itemize}
\item Virtual observatory (VO)
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orga81759b}]{Astronomy -- Fields}
Astronomy is divided into many subfields, such as galactic astronomy,
planetary science, extragalactic astronomy, stellar astronomy, solar
astronomy, and cosmology. In general, the theoretical and the
observational.
The purpose of observational study is to observe, record, and collect
the data about the universe under study and theoretical scientists
mainly calculate the measurable consequences of physical models.
Theoretical astronomers use the collected data to generate the
simulation model, and the corresponding observations serve the purpose
of evaluating the model or indicating the need for tweaking them.
\end{frame}
\begin{frame}[label={sec:org38403e1}]{Astronomy -- Data}
With ultra-modern technology, the astronomical data collection has
been very simple, and rate is very high. And in astronomy, there are
"4Vs" -- volume, variety, velocity, and value.
\begin{description}
\item[{Volume}] data size -- can be PB, EB, ZB.
\item[{Variety}] complex elements -- signals, images, videos, spectra,
time series, and simulations.
\item[{Velocity}] rate of production and transmission -- sizeable synoptic
survey telescopes (LSST) 20 TB per night for ten years.
\item[{Value}] high value to the astronomy of the data.
\end{description}
\end{frame}
\begin{frame}[label={sec:orga961a0f}]{Data -- Data type}
\begin{itemize}
\item One-dimensional information in the form of signals;
\item Two-dimensional information in images;
\begin{itemize}
\item multispectral (8-10) and hyperspectral (100+).
\item From electromagnetic (EM) emissions
\item Image data
\item Spectral data
\end{itemize}
\item Three-dimensional information in the video?;
\item Time series (GW).
\item[{Electromagnetic Spectrum}] From \(1\) Hz to \(10^{25}\) Hz, From km to
atom size.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgd165f2f}]{Tasks}
\begin{itemize}
\item Stellar Classification \autocite{jing-minNewStellarSpectral2020,chiuSearchingYoungStellar2021}
\begin{itemize}
\item Most potential applications
\item O, B, A, F, G, K, and M. (O and M represent the hottest and coolest types)
\end{itemize}
\item Pulsar Detection and Recognition (Time series, intensity and time)
\item Star / galaxy separation/classification and information analysis \autocite{hausenMorpheusDeepLearning2020}
\begin{itemize}
\item Shape and size
\end{itemize}
\item Transient Analysis (暂现源, Fast ratio burst (FRB), gamma-ray burst,
pulsar, gravitational
wave\autocite{zhangDetectingGravitationalWaves2022}, and other
transient phenomena)(FAST)
\item Astronomical survey analysis (e.g. Gaia survey, Active Galactic Nuclei(AGN))
\item Other applications
\end{itemize}
\end{frame}
\section{Papers}
\label{sec:org8c0fb40}
\begin{frame}[label={sec:org169747f}]{Paper 1}
\begin{itemize}
\item Detecting gravitational waves from extreme mass ratio inspirals (EMRI)
using convolutional neural networks
\autocite{zhangDetectingGravitationalWaves2022}
\item By: Xue-Ting Zhang, Chris Messenger, Natalia Korsakova, Man Leong
Chan, Yi-Ming Hu, and Jing-dong Zhang
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org8e76c44}]{Gravitational waves}
\begin{itemize}
\item Double White Dwarfs (DWDs)
\item Massive Binary Black Holes (MBBHs)
\item Stellar-mass Binary Black Holes (sBBHs)
\item Extreme mass ratio inspirals (EMRIs)
\item Stochastic gravitational-wave background (mHz frequency band)
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orge48385b}]{Waveform models of EMRIs}
\begin{itemize}
\item Teukolsky-based waveform and Numerical Kludge (NK) waveform.
\item Analytic Kludge (AK) model, through post-Newtonian equations (max
4.5 now)
\item Augmented Analytic Kludge (AAK). Accuracy similar to NK with the
generating speed of AK
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org845a116}]{The TianQin (天琴) mission}
Ground noise affects accuracy, and TianQin is in space and can
accurately detect gravitational waves.
\begin{figure}[htbp]
\centering
\includegraphics[height=5cm]{./p2.png}
\caption{An example EMRI signals compared with the sensitivity curve of TianQin. A total length of 3 months observation time is assumed. From \cite{zhangDetectingGravitationalWaves2022}}
\end{figure}
\end{frame}
\begin{frame}[label={sec:orgce4cef9}]{Data}
Two categories. One can express the data \(d\) as the addition of
random Gaussian noise \(n\) and the GW signal \(h\).
\begin{itemize}
\item \(d(t) = h(t) + n(t)\), if signal is present
\item \(d(t) = n(t)\), if there is no signal.
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[height=4cm]{./p3.png}
\caption{An example of whitened data in channel I in comparison with signal hI alone. For this event, the SNR is set to be 50. We draw the reader’s attention to the difference in scale for the noise and the signal. From \cite{zhangDetectingGravitationalWaves2022}}
\end{figure}
\end{frame}
\begin{frame}[label={sec:org662735a}]{Model}
\begin{description}
\item[{Input}] Simulation data for TianQin, using AK and AKK.
\begin{itemize}
\item 7864320 seconds (three months)
\item 1/30 Hz
\item 262144 size
\end{itemize}
\end{description}
\begin{center}
\includegraphics[height=4cm]{./p4.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:org9e4b260}]{Experiment and Results}
\(M\) is MBH mass, \(10^4, 10^7\); \(\rho\) is Signal-to-Noise Ratio
(SNR); \(z\) is redshift.
\begin{center}
\includegraphics[height=6cm]{./p6.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgcfa1932}]{Experiment and Results}
\begin{figure}[htbp]
\centering
\includegraphics[height=5cm]{./p7.png}
\caption{The ROC curve of the signals from testing groups 1-3 is shown with the blue, purple, and red lines, respectively. The blue line indicates the expected effectiveness for group 1, the parameters have identical distribution to the training data; for group 2, the distribution is drawn from an astrophysical model; for group 3, the distribution is the same as group 1 and the training data, but switched to the AAK waveform model. The 1-\(\sigma\) confidence intervals are indicated by the shaded regions.}
\end{figure}
\end{frame}
\begin{frame}[label={sec:orgbe48363}]{Experiment and Results}
\begin{figure}[htbp]
\centering
\includegraphics[height=5cm]{./p8.png}
\caption{The comparison of the CNN sensitivity over EMRIs with different parameters.The vertical axis is the TAP, while the horizontal axis is the single varying parameter. The 1-σ confidence intervals are indicated by the shaded regions. The 1-\(\sigma\) confidence intervals are indicated by the shaded regions.}
\end{figure}
\end{frame}
\begin{frame}[label={sec:orge91f678}]{Paper 2}
\begin{itemize}
\item Morpheus: A Deep Learning Framework for the Pixel-level Analysis of
Astronomical Image Data \autocite{hausenMorpheusDeepLearning2020}
\item By: Ryan Hausen and Brant E. Robertson.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org12b97c1}]{Target}
\begin{itemize}
\item Source detection,
\item Source segmentation,
\item Morphological classification
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org205197a}]{Model}
A U-Net.
\begin{description}
\item[{Input}] astronomical FITS images
\item[{Output}] types -- spheroid, disk, irregular, point source/compact, and background.
\end{description}
\begin{center}
\includegraphics[width=.9\linewidth]{./p9.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:org9c475be}]{Model -- Block}
\begin{figure}[htbp]
\centering
\includegraphics[height=5cm]{./p10.png}
\caption{A single block in the neural network architecture. Panel (c) shows a single block from the architecture, parameterized by the number P (black) of block operations and the number Q (purple) of convolutional artificial neurons. Panel (b) shows an example zoom-in where there are P=2 groups of Q=4 block operations. Panel (a) shows a zoom-in on a block operation, which consists of batch normalization, Q = 4 CANs, and a rectified linear unit (ReLU).}
\end{figure}
\end{frame}
\begin{frame}[label={sec:org388f650}]{Classification results}
\begin{center}
\includegraphics[width=.9\linewidth]{./p11.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orge5644a2}]{Classification results}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./p12.png}
\end{center}
\end{column}
\begin{column}{0.5\textwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./p13.png}
\end{center}
\end{column}
\end{columns}
\end{frame}
\section{Refs}
\label{sec:orga25ba6e}
\begin{frame}[allowframebreaks]{Refs}
\printbibliography
\end{frame}
\end{document}