-
Notifications
You must be signed in to change notification settings - Fork 0
/
readme.tex
630 lines (528 loc) · 17.6 KB
/
readme.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
% Created 2023-03-24 Fri 00:23
% Intended LaTeX compiler: xelatex
\documentclass[aspectratio=1610,xcolor={dvipsnames},hyperref={colorlinks,unicode,linkcolor=violet,anchorcolor=BlueViolet,citecolor=YellowOrange,filecolor=black,urlcolor=Aquamarine}]{beamer}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{booktabs}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{nicefrac}
\usepackage[dvipsnames]{xcolor}
\usepackage[colorlinks,unicode,linkcolor=violet,anchorcolor=BlueViolet,citecolor=YellowOrange,filecolor=black,urlcolor=Aquamarine]{hyperref}
\usepackage{etoolbox}
\useoutertheme{infolines}
\setbeamertemplate{frametitle}{%
\usebeamerfont{frametitle}\insertframetitle\strut%
\vskip-0\baselineskip%
\leaders\vrule width .95\paperwidth\vskip1pt%
\vskip0pt%
\nointerlineskip%
}
%% T for footer
\setbeamercolor{footlinecolor}{fg=cyan,bg=green}
\setbeamercolor{author in head/foot}{fg=blue}
\setbeamertemplate{footline}{%
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.26\paperwidth,ht=2.25ex,dp=1ex,left]{author in head/foot}%
\hspace*{2ex}\usebeamerfont{author in head/foot} Dept. CSE, UT Arlington
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.50\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
\usebeamerfont{title in head/foot}Scalable Modeling \& Imaging \& Learning Lab (SMILE)
\end{beamercolorbox}%
\begin{beamercolorbox}[wd=.24\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
\usebeamerfont{date in head/foot}
\insertshortdate{}\hspace*{1em} % date
\insertframenumber/\inserttotalframenumber\hspace*{2ex}
\end{beamercolorbox}}%
\vskip0pt%
}
\setbeamerfont{footnote}{size=\tiny}
\usepackage{minted}
\usetheme{default}
\usefonttheme{serif}
\useinnertheme{circles}
\author{Nasy}
\date{Nov 18, 2022}
\title{Physics Informed Neural Networks}
\hypersetup{
pdfauthor={Nasy},
pdftitle={Physics Informed Neural Networks},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.0.50 (Org mode 9.5.5)},
pdflang={English}}
\begin{document}
\maketitle
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{Introduction}
\label{sec:org7a0ad47}
\begin{frame}[label={sec:org8c459a7}]{Finding the inverse function of a parabola}
Given a function \(\mathcal{P}: y \rightarrow y^{2}\), where \(y \in
[0, 1]\), find a unknow function \(f\) that satisfies
\(\mathcal{P}(f(x)) = x,\ \forall x \in [0, 1]\).
\begin{columns}
\begin{column}{0.6\columnwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./p1.png}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgdd90e17}]{Classical}
\begin{columns}
\begin{column}{0.4\columnwidth}
A classical approach is to use a neural network to approximate the data points \(\Omega\):
\[f_{\theta}(x) \approx y,\ \forall (x, y) \in \Omega\]
where \(\theta\) is the parameters of the neural network.
However, nowhere near the solution.
\end{column}
\begin{column}{0.6\columnwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./p2.png}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgf972ef5}]{Physics approach}
\begin{columns}
\begin{column}{0.4\columnwidth}
\[\mathcal{P}(f_{\theta}(x)) \approx y,\ \forall (x, y) \in \Omega\]
Now, minimize the error between \(f^{2}_{\theta}(x)\) and \(y\).
\end{column}
\begin{column}{0.6\columnwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./p3.png}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org0b84944}]{Physics Informed Neural Networks (PINNs) Definition}
Neural networks that are trained to solve supervised learning tasks
while respecting any given law of physics described by general
nonlinear partial differential equations (PDE).
\begin{center}
\includegraphics[width=.9\linewidth]{./p4.png}
\end{center}
\end{frame}
\section{Partial differential equations (PDE)}
\label{sec:org16c5aaf}
\subsection{Introduction}
\label{sec:orgfe3f5d8}
\begin{frame}[label={sec:org4d67a19}]{What is PDE?}
\begin{itemize}
\item Equation containing \alert{unknown functions} and \alert{its partial derivative}.
\item Describe the relationship between independent variables, unknown functions and partial derivative.
\end{itemize}
\begin{exampleblock}{Example}\label{sec:orga121ad7}
\begin{itemize}
\item \(f(x, y) = ax + by + c\), where \(a, b, c\) are unknown parameters.
\item \(u(x, y) = \alpha u(x, y) + \beta f(x, y)\) where \(u\) is the unknown function.
\item \(u_{x}(x, y) = \alpha u_{y}(x, y) + \beta f_{xy}(x, y)\) where \(u_{x}\) is the partial derivative of \(u\) with respect to \(x\), \(u_{y}\) is the partial derivative of \(u\) with respect to \(y\), and \(f_{xy}\) is the partial derivative of \(f\) with respect to \(x\) and \(y\).
\end{itemize}
\end{exampleblock}
\end{frame}
\begin{frame}[label={sec:org01d28c4}]{Notations}
\begin{itemize}
\item \(\dot{u} = \frac{\partial{u}}{\partial{t}}\)
\item \(u_{xy} = {\partial ^{2}u \over \partial y\,\partial x}\)
\item \(\nabla u (x, y, z) = u_{x} + u_{y} + u_{z}\)
\item \(\nabla \cdot \nabla u(x, y, z) = \Delta u(x,y,z) = u_{xx} + u_{yy} + u_{zz}\)
\item \(\nabla\) : nabla, or del.
\end{itemize}
\end{frame}
\subsection{PDE in the real world}
\label{sec:orga8ece5e}
\begin{frame}[label={sec:org391d88d}]{Laplace's equation}
\[\Delta \varphi = 0\]
or
\[\nabla \cdot \nabla \varphi = 0\]
or, in a 3D space:
\[\frac {\partial ^{2}f}{\partial x^{2}}+\frac {\partial ^{2}f}{\partial y^{2}}+\frac {\partial ^{2}f}{\partial z^{2}} = 0\]
\end{frame}
\begin{frame}[label={sec:org4c57d1c}]{Poisson's equation}
\[\Delta \varphi = f\]
\begin{center}
\includegraphics[height=6cm]{./p5.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgfe4b3a3}]{Heat equation}
\[\dot{u} = \frac {\partial u}{\partial t} = \alpha \Delta u\]
where \(\alpha\) is the thermal diffusivity.
\end{frame}
\begin{frame}[label={sec:orgb6db810}]{Wave equation}
\[\ddot {u}=c^{2}\nabla ^{2}u\]
where \(c\) is the wave speed.
\end{frame}
\begin{frame}[label={sec:org21893a0}]{Burgers' equation}
\[u_t + u u_x = \nu u_{xx}\]
\begin{description}
\item[{\(t\)}] temporal coordinate
\item[{\(x\)}] spatial coordinate
\item[{\(u(x, t)\)}] speed of fluid at the indicated spatial and temporal coordinates
\item[{\(\nu\)}] viscosity of fluid
\end{description}
\end{frame}
\subsection{Boundary conditions}
\label{sec:org242e28d}
\begin{frame}[label={sec:orgdc8fb60}]{Boundary conditions}
For a equation \(\nabla^{2}y+y=0\) in domain \(\Omega\).
\begin{itemize}
\item Dirichlet boundary condition: \(y(x)=f(x)\quad \forall x\in \partial \Omega\)
\item Neumann boundary condition: \(\frac {\partial y}{\partial \mathbf {n} }(\mathbf {x} )=f(\mathbf {x} )\quad \forall \mathbf {x} \in \partial \Omega\)
\begin{itemize}
\item Where \(f\) is a known scalar function defined on the boundary domain \(\partial \Omega\), \(\mathbf{n}\) denotes the (typically exterior) normal to the boundary.
\item The normal derivative, which shows up on the left side, is defined as \(\frac {\partial y}{\partial \mathbf {n} }(\mathbf {x} )=\nabla y(\mathbf {x} )\cdot \mathbf {\hat {n}} (\mathbf {x} )\), where \(\mathbf {\hat {n}}\) is the unit normal.
\end{itemize}
\item Robin boundary condition
\begin{itemize}
\item Combine Dirichlet and Neumann boundary conditions.
\end{itemize}
\item Periodic boundary condition
\end{itemize}
\end{frame}
\section{PINNs}
\label{sec:org493dbd1}
\begin{frame}[label={sec:org91e1858}]{Paper}
\begin{itemize}
\item Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations\cite{raissiPhysicsInformedDeep2017}
\item Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations\cite{raissiPhysicsInformedDeep2017a}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgac712d9}]{Problem}
\begin{itemize}
\item Data-driven solution and data-driven discovery
\item Continuous time and discrete time models
\end{itemize}
\end{frame}
\subsection{Data-driven solution with continuous time}
\label{sec:org3c1b7dc}
\begin{frame}[label={sec:org672ff1b}]{Data-driven solution with continuous time}
General PDE Form:
\[u_t + \mathcal{N}[u] = 0,\ x \in \Omega, \ t\in[0,T]\]
where:
\begin{description}
\item[{\(\mathcal{N}[u]\)}] nonlinear differential operator
\item[{\(u(t, x)\)}] unknown function (solution).
\item[{\(\Omega\)}] spatial domain.
\item[{\(t\)}] time.
\end{description}
\end{frame}
\begin{frame}[label={sec:orgde2178e}]{Physics informed neural network}
\begin{itemize}
\item A neural network \(u_{\theta} \approx u\), where \(\theta\) is the parameters of the neural network.
\item A \alert{physics informed neural network} \(f_{\theta} = {u_{\theta}}_{t} + \mathcal{N}[u_{\theta}]\).
\item Target: \(f_{\theta} \approx u_{t} + \mathcal{N}[u]\) and \(u_{\theta} \approx u\).
\begin{itemize}
\item \(\mathcal{L} = \mathcal{L}_{f} + \mathcal{L}_{u}\)
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[height=5cm]{./p6.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:org0a1c8d9}]{Example (Burgers' Equation)}
The equation:
\[u_t + u u_x = \nu u_{xx}\]
Here, already know \(\nu = 0.01 / \pi\), \(x \in [-1, 1], t \in [0, 1]\),
Thus,
\[u_{t} + uu_{x} - 0.01/\pi u_{xx} = 0 \]
And the equation along with Dirichlet boundary conditions can be written as:
\begin{itemize}
\item \(u(0, x) = -\sin(\pi x)\)
\item \(u(t, -1) = u(t, 1) = 0\)
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org444c4dc}]{Target}
\begin{itemize}
\item Data:
\begin{itemize}
\item Boundary only data from boundary conditions.
\end{itemize}
\item Input: \(\{t, x\}\)
\item Output: \(u(t, x)\)
\item Target: \(f_{\theta} \approx u_{t} + \mathcal{N}[u]\) and \(u_{\theta} \approx u\).
\begin{itemize}
\item \(\mathcal{L} = \mathcal{L}_{f} + \mathcal{L}_{u}\)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org1d3afdf},fragile,containsverbatim]{Example (Burgers' Equation) with codes}
\begin{minted}[]{python}
def u_theta(theta, t, x):
# u_theta.apply(theta, t, x) to approx u(x, t)
return net(theta, t, x)
def f_theta(theta, t, x):
# See the auto diff cookbook
# https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
u = u_theta.apply
u_t = jax.jacrev(u, argnums=1)(theta, t, x)
u_x = jax.jacrev(u, argnums=2)(theta, t, x)
u_xx = jax.hessian(u, argnums=2)(theta, t, x)
# or jax.jacfwd(jax.jacrev(u, argnums=2), argnums=2)
f = lambda: u_t + u * u_x - 0.01 * u_xx
return f
\end{minted}
\end{frame}
\begin{frame}[label={sec:orgd2c9a64}]{Train and Results}
\begin{itemize}
\item Train with MLPs with L-BFGS solver (quasi-newton method).
\item Cannot use ReLU but tanh, because when we do the second order derivative, the ReLU will be 0.
\end{itemize}
\begin{center}
\includegraphics[width=.9\linewidth]{./p7.png}
\end{center}
\end{frame}
\subsection{Data-driven discovery with continuous time}
\label{sec:org9698a8a}
\begin{frame}[label={sec:org7b92568}]{Data-driven discovery with continuous time}
General PDE Form:
\[u_t + \mathcal{N}[u;\lambda] = 0,\ x \in \Omega, \ t\in[0,T]\]
where:
\begin{description}
\item[{\(\mathcal{N}[u;\lambda]\)}] nonlinear differential operator with parameters \(\lambda\).
\item[{\(u(t, x)\)}] unknown function (solution).
\item[{\(\Omega\)}] spatial domain.
\item[{\(t\)}] time.
\end{description}
\end{frame}
\begin{frame}[allowframebreaks]{Example (Incompressible Navier-Stokes Equation (convection–diffusion equations))}
The equations:
\[u_t + \lambda_1 (u u_x + v u_y) = -p_x + \lambda_2(u_{xx} + u_{yy}),\]
\[v_t + \lambda_1 (u v_x + v v_y) = -p_y + \lambda_2(v_{xx} + v_{yy})\],
where:
\begin{description}
\item[{\(u(t, x, y)\)}] \(x\)-component of the velocity field,
\item[{\(v(t, x, y)\)}] \(y\)-component of the velocity field,
\item[{\(p(t, x, y)\)}] pressure,
\item[{\(\lambda\)}] the unknown parameters.
\end{description}
Additional physical constraints:
\begin{itemize}
\item Solutions to the Navier-Stokes equations are searched in the set of divergence-free functions, i.e.:
\begin{itemize}
\item \(u_{x} + u_{y} = 0\)
\item which describes the conservation of mass of the fluid
\end{itemize}
\item \(u\) and \(v\) can written as a latent function \(\psi(t, x, y)\) with an assumption:
\begin{itemize}
\item \(u = \psi_{y}, v = -\psi_{x}\)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org5ffd44c}]{NS Equation figure}
\begin{center}
\includegraphics[height=7cm]{./p8.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:org5b07541}]{Example (Navier-Stokes Equation) -- Target}
\begin{itemize}
\item The neural network equations:
\begin{itemize}
\item \(f := u_t + \lambda_1 (u u_x + v u_y) + p_x - \lambda_2(u_{xx} + u_{yy}),\)
\item \(g := v_t + \lambda_1 (u v_x + v v_y) + p_y - \lambda_2(v_{xx} + v_{yy})\)
\end{itemize}
\item Inptu: \(\{t,x,y,u,v\}\) with noisy.
\item Output: \((\psi(t, x, y), p(t, x, y))\).
\item Target:
\begin{itemize}
\item \(f_{\theta} \approx f\)
\item \(g_{\theta} \approx g\)
\item \(u_{\theta} \approx u\)
\item \(v_{\theta} \approx v\)
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org5c27c39}]{Results}
\begin{center}
\includegraphics[width=.9\linewidth]{./p9.png}
\end{center}
\end{frame}
\section{JAX}
\label{sec:org207db80}
\begin{frame}[label={sec:org08699cc}]{Introduction}
JAX is Autograd and XLA, brought together for high-performance
numerical computing and machine learning research. It provides
composable transformations of Python+NumPy programs: differentiate,
vectorize, parallelize, Just-In-Time compile to GPU/TPU, and more.
\end{frame}
\begin{frame}[label={sec:orgb43aadd},fragile]{Pure functional}
\begin{itemize}
\item \(f(x) = y\), always.
\item non-pure function:
\begin{itemize}
\item IO operator: \texttt{print}
\item No seed random function
\item \texttt{time}
\item Runtime error.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgcbd9332},fragile]{Ecosystem}
\begin{itemize}
\item JAX (jax, jaxlib)
\begin{itemize}
\item \texttt{jax}
\item \texttt{jax.numpy}
\end{itemize}
\item Haiku (dm-haiku) from deepmind
\begin{itemize}
\item Modules
\end{itemize}
\item Optax (optax) from deepmind
\begin{itemize}
\item Light
\item Linear system optimizers (\(Ax = b\))
\end{itemize}
\item JAXopt (jaxopt)
\begin{itemize}
\item Other optimizers.
\end{itemize}
\item Jraph (jraph)
\begin{itemize}
\item Standardized data structures for graphs.
\end{itemize}
\item JAX, M.D. (jax-md)
\begin{itemize}
\item JAX and Molecular Dynamics
\end{itemize}
\item RLax (rlax), and Coax (coax)
\begin{itemize}
\item Reinforcement Learning
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org7b2516c},fragile,containsverbatim]{Example (def)}
\begin{minted}[]{python}
import jax
import jax.numpy as jnp
import haiku as hk
def _u(t, x):
return hk.MLP(jnp.concatenate([t, x], axis=-1), [10, 10, 1])
u = hk.transform_with_state(_u)
\end{minted}
\end{frame}
\begin{frame}[label={sec:org787ce60},fragile,containsverbatim]{Example (init)}
\begin{minted}[]{python}
fake_t = jnp.ones([batch, size])
fake_x = jnp.ones([batch, size])
# theta: params
# state: training state
# rng: random number generator
params, state = u.init(rng, fake_t, fake_x)
hk.experimental.tabulate(u)(fake_t, fake_x)
\end{minted}
\end{frame}
\begin{frame}[label={sec:org536c290},fragile,containsverbatim]{Example (loss)}
\begin{minted}[]{python}
def loss_fn(config, ...):
def _loss(params, t, x):
u_theta = u.apply(params, t, x)
...
loss = _f
return loss
return _loss
loss = loss_fn(config, ...)
\end{minted}
\end{frame}
\begin{frame}[label={sec:orgfadc2c6},fragile,containsverbatim]{Example (optim)}
\begin{minted}[]{python}
import optax
lr = optax.linear_schedule(
0.001, # init
0.001 / 10, # final
1, # steps change to final
150 # start linear decay after steps
)
opt = optax.adam(learning_rate=lr)
opt = optax.adamax(learning_rate=lr)
\end{minted}
\end{frame}
\begin{frame}[label={sec:org6984ed2},fragile,containsverbatim]{Example (solver)}
\begin{minted}[]{python}
import jaxopt
# Linear solver
solver = jaxopt.OptaxSolver(
loss,
opt,
maxiter=epochs,
...
)
# non-linear solver
solver = jaxopt.LBFGS(
loss,
maxiter=epochs,
...
)
opt_state = solver.init(params, state)
update = solver.update
\end{minted}
\end{frame}
\begin{frame}[label={sec:org86d3bb6},fragile]{Example (train)}
\begin{minted}[]{python}
# init
params, state, opt_state, update
for batch in data:
params, state = update(params, state, batch)
\end{minted}
\end{frame}
\begin{frame}[label={sec:org3084c38},fragile]{Example (parallel)}
\begin{minted}[]{python}
# Use pjit
from jax.experimental.maps import Mesh, ResourceEnv, thread_resources
from jax.experimental.pjit import PartitionSpec, pjit
mesh = Mesh(np.asarray(jax.devices(), dtype=object), ["data", ...])
thread_resources.env = ResourceEnv(physical_mesh=mesh, loops=())
update = pjit(
solver.update,
in_axis_resources=[
None, # params
None, # state
PartitionSpec("data"), # batch
],
out_axis_resources=None,
)
\end{minted}
\end{frame}
\section{Conclusion}
\label{sec:org21faefe}
\begin{frame}[label={sec:orgb0d717a}]{Conclusion}
\begin{itemize}
\item Find an inverse function of a parabola
\begin{itemize}
\item Classical
\item Physics informed
\end{itemize}
\item PDE
\begin{itemize}
\item PDE example
\item PDE boundary
\end{itemize}
\item PINNs
\begin{itemize}
\item Data-driven solution with continuous time
\begin{itemize}
\item Burgers' equation
\end{itemize}
\item Data-driven discovery with continuous time
\begin{itemize}
\item Navier-Stokes equation
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\section{Refs}
\label{sec:org93842f9}
\begin{frame}[allowframebreaks]{Refs}
\bibliographystyle{oscola}
\bibliography{~/.emacs.d/萚兮/時/refs/ref}
\end{frame}
\end{document}