-
Notifications
You must be signed in to change notification settings - Fork 0
/
Unet.py
179 lines (152 loc) · 6 KB
/
Unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# imported from https://github.com/facebookresearch/fastMRI/blob/main/fastmri/models/unet.py
# haven't made any changes to the U-Net code imported from the fastmri website
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import torch
from torch import nn
from torch.nn import functional as F
class Unet(nn.Module):
"""
PyTorch implementation of a U-Net model.
O. Ronneberger, P. Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.
"""
def __init__(
self,
in_chans: int,
out_chans: int,
chans: int = 32,
num_pool_layers: int = 4,
drop_prob: float = 0.0,
):
"""
Args:
in_chans: Number of channels in the input to the U-Net model.
out_chans: Number of channels in the output to the U-Net model.
chans: Number of output channels of the first convolution layer.
num_pool_layers: Number of down-sampling and up-sampling layers.
drop_prob: Dropout probability.
"""
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.chans = chans
self.num_pool_layers = num_pool_layers
self.drop_prob = drop_prob
self.down_sample_layers = nn.ModuleList([ConvBlock(in_chans, chans, drop_prob)])
ch = chans
for _ in range(num_pool_layers - 1):
self.down_sample_layers.append(ConvBlock(ch, ch * 2, drop_prob))
ch *= 2
self.conv = ConvBlock(ch, ch * 2, drop_prob)
self.up_conv = nn.ModuleList()
self.up_transpose_conv = nn.ModuleList()
for _ in range(num_pool_layers - 1):
self.up_transpose_conv.append(TransposeConvBlock(ch * 2, ch))
self.up_conv.append(ConvBlock(ch * 2, ch, drop_prob))
ch //= 2
self.up_transpose_conv.append(TransposeConvBlock(ch * 2, ch))
self.up_conv.append(
nn.Sequential(
ConvBlock(ch * 2, ch, drop_prob),
nn.Conv2d(ch, self.out_chans, kernel_size=1, stride=1),
)
)
def forward(self, image: torch.Tensor) -> torch.Tensor:
"""
Args:
image: Input 4D tensor of shape `(N, in_chans, H, W)`.
Returns:
Output tensor of shape `(N, out_chans, H, W)`.
"""
stack = []
output = image
# apply down-sampling layers
for layer in self.down_sample_layers:
output = layer(output)
stack.append(output)
output = F.avg_pool2d(output, kernel_size=2, stride=2, padding=0)
output = self.conv(output)
# apply up-sampling layers
for transpose_conv, conv in zip(self.up_transpose_conv, self.up_conv):
downsample_layer = stack.pop()
output = transpose_conv(output)
# reflect pad on the right/botton if needed to handle odd input dimensions
padding = [0, 0, 0, 0]
if output.shape[-1] != downsample_layer.shape[-1]:
padding[1] = 1 # padding right
if output.shape[-2] != downsample_layer.shape[-2]:
padding[3] = 1 # padding bottom
if torch.sum(torch.tensor(padding)) != 0:
output = F.pad(output, padding, "reflect")
output = torch.cat([output, downsample_layer], dim=1)
output = conv(output)
return output
class ConvBlock(nn.Module):
"""
A Convolutional Block that consists of two convolution layers each followed by
instance normalization, LeakyReLU activation and dropout.
"""
def __init__(self, in_chans: int, out_chans: int, drop_prob: float):
"""
Args:
in_chans: Number of channels in the input.
out_chans: Number of channels in the output.
drop_prob: Dropout probability.
"""
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.drop_prob = drop_prob
self.layers = nn.Sequential(
nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(out_chans),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Dropout2d(drop_prob),
nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1, bias=False),
nn.InstanceNorm2d(out_chans),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Dropout2d(drop_prob),
)
def forward(self, image: torch.Tensor) -> torch.Tensor:
"""
Args:
image: Input 4D tensor of shape `(N, in_chans, H, W)`.
Returns:
Output tensor of shape `(N, out_chans, H, W)`.
"""
return self.layers(image)
class TransposeConvBlock(nn.Module):
"""
A Transpose Convolutional Block that consists of one convolution transpose
layers followed by instance normalization and LeakyReLU activation.
"""
def __init__(self, in_chans: int, out_chans: int):
"""
Args:
in_chans: Number of channels in the input.
out_chans: Number of channels in the output.
"""
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.layers = nn.Sequential(
nn.ConvTranspose2d(
in_chans, out_chans, kernel_size=2, stride=2, bias=False
),
nn.InstanceNorm2d(out_chans),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
)
def forward(self, image: torch.Tensor) -> torch.Tensor:
"""
Args:
image: Input 4D tensor of shape `(N, in_chans, H, W)`.
Returns:
Output tensor of shape `(N, out_chans, H*2, W*2)`.
"""
return self.layers(image)