-
Notifications
You must be signed in to change notification settings - Fork 177
/
deselected_tests.yaml
executable file
·463 lines (389 loc) · 28.7 KB
/
deselected_tests.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#===============================================================================
# Copyright 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#===============================================================================
# This file lists node ids (following pytest format) of scikit-learn tests
# that are to be deselected during the test discovery step.
#
# Deselection can be predicated on the version of scikit-learn used.
# Use - node_id cond, or - node_id cond1,cond2 where cond is OPver.
# Supported OPs are >=, <=, ==, !=, >, <
# For example,
# - tests/test_isotonic.py::test_permutation_invariance >0.18,<=0.19
# will exclude deselection in versions 0.18.1, and 0.18.2 only.
deselected_tests:
# Array API support
# sklearnex functional Array API support doesn't guaranty namespace consistency for the estimator's array attributes.
- decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_input_and_values-array_api_strict-None-None]
- decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_input_and_values-array_api_strict-None-None]
- decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh')-check_array_api_get_precision-array_api_strict-None-None]
- decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,svd_solver='covariance_eigh',whiten=True)-check_array_api_get_precision-array_api_strict-None-None]
- linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_attributes-array_api_strict-None-None]
- linear_model/tests/test_ridge.py::test_ridge_array_api_compliance[Ridge(solver='svd')-check_array_api_input_and_values-array_api_strict-None-None]
# `train_test_split` inconsistency for Array API inputs.
- model_selection/tests/test_split.py::test_array_api_train_test_split[True-None-array_api_strict-None-None]
- model_selection/tests/test_split.py::test_array_api_train_test_split[True-stratify1-array_api_strict-None-None]
- model_selection/tests/test_split.py::test_array_api_train_test_split[False-None-array_api_strict-None-None]
# PCA. Array API functionally supported for all factorizations. power_iteration_normalizer=["LU", "QR"]
- decomposition/tests/test_pca.py::test_array_api_error_and_warnings_on_unsupported_params
# PCA. InvalidParameterError: The 'M' parameter of randomized_svd must be an instance of 'numpy.ndarray' or a sparse matrix.
- decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_input_and_values-array_api_strict-None-None]
- decomposition/tests/test_pca.py::test_pca_array_api_compliance[PCA(n_components=2,power_iteration_normalizer='QR',random_state=0,svd_solver='randomized')-check_array_api_get_precision-array_api_strict-None-None]
# Ridge regression. Array API functionally supported for all solvers. Not raising error for non-svd solvers.
- linear_model/tests/test_ridge.py::test_array_api_error_and_warnings_for_solver_parameter[array_api_strict]
# 'kulsinski' distance was deprecated in scipy 1.11 but still marked as supported in scikit-learn < 1.3
- neighbors/tests/test_neighbors.py::test_kneighbors_brute_backend[float64-kulsinski] <1.3
- neighbors/tests/test_neighbors.py::test_radius_neighbors_brute_backend[kulsinski] <1.3
# sklearnex PCA always chooses "covariance_eigh" solver instead of "full" when solver="auto"
# resulting in solver assignment check failure for sklearn version >= 1.5
- decomposition/tests/test_pca.py::test_pca_svd_solver_auto[1000-500-400-full] >=1.5
- decomposition/tests/test_pca.py::test_pca_svd_solver_auto[1000-500-0.5-full] >=1.5
# Non-critical, but there are significant differences due to different implementations
- linear_model/tests/test_common.py::test_balance_property[42-True-LinearRegression]
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-brute]
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-brute]
# Same as above but for visual studio builds (previously a deselection for macOS)
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-auto] >=1.2 win32
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-ball_tree] >=1.2 win32
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-kd_tree] >=1.2 win32
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-auto] >=1.2 win32
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-ball_tree] >=1.2 win32
- neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-kd_tree] >=1.2 win32
# Sklearnex RandomForestClassifier RNG is different from scikit-learn and daal4py
# resulting in different feature importances for small number of trees (10).
# Issue dissappears with bigger number of trees (>=20)
- inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-1]
- inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-2]
- inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-1]
- inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-2]
# TODO: add support of subset invariance to SVM
- tests/test_common.py::test_estimators[SVC()-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[NuSVC()-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[SVR()-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[NuSVR()-check_methods_subset_invariance]
# SVR.fit fails when input is two samples of one class
- preprocessing/tests/test_data.py::test_cv_pipeline_precomputed
# KDtree kNN rarely misses 0-distance points when kneighbors is used on same-fitting data
- manifold/tests/test_spectral_embedding.py::test_precomputed_nearest_neighbors_filtering
# Cache directory is not accessible on some systems
- utils/tests/test_validation.py::test_check_memory
# oneDAL doesn't throw error if resulting coeffs are not finite
- linear_model/tests/test_coordinate_descent.py::test_enet_nonfinite_params
- svm/tests/test_svm.py::test_svc_nonfinite_params
# Different exception types in scikit-learn-intelex and scikit-learn
- utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[asarray-X]
- utils/tests/test_validation.py::test_check_array_links_to_imputer_doc_only_for_X[csr_matrix-X]
# TODO: investigate copy failure of read-only buffer
- linear_model/tests/test_coordinate_descent.py::test_read_only_buffer
# Difference between scikit-learn and scikit-learn-intelex methods of kNN
- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float64-euclidean-True-1000-5-100-1]
- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float64-minkowski-True-1000-5-100-1]
- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors[float64-l2-True-1000-5-100-1]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-euclidean-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-minkowski-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-euclidean-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-minkowski-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_KNeighborsClassifier_multioutput
# Models with sparse data are different between oneAPI Data Analytics Library (oneDAL) and stock scikit-learn
- svm/tests/test_sparse.py::test_svc
- svm/tests/test_sparse.py::test_svc_iris
- svm/tests/test_sparse.py::test_sparse_realdata
# Decision function is different, 1.83697605e-06
- ensemble/tests/test_bagging.py::test_sparse_classification
# Same results as in scikit-learn, but in a different order
- svm/tests/test_svm.py::test_svc_ovr_tie_breaking[SVC]
- svm/tests/test_svm.py::test_svc_ovr_tie_breaking[NuSVC]
# Different models between oneAPI Data Analytics Library (oneDAL) and stock scikit-learn with custom and precompute kernel
- svm/tests/test_svm.py::test_svc_clone_with_callable_kernel
- svm/tests/test_svm.py::test_precomputed
# scikit-learn expects an exception for sparse matrices with 64-bit integer indices,
# scikit-learn-intelex works correctly with 64-bit integer indices
- tests/test_common.py::test_estimators[NuSVC()-check_estimator_sparse_data]
- tests/test_common.py::test_estimators[NuSVC()-check_estimator_sparse_array]
- tests/test_common.py::test_estimators[NuSVC()-check_estimator_sparse_matrix]
- utils/tests/test_estimator_checks.py::test_xfail_ignored_in_check_estimator
# SVC._dual_coef_ is changing after fitting, but the result of prediction is still the same
- svm/tests/test_svm.py::test_tweak_params
# Bitwise comparison of SVR score using a print (diff = 2.220446049250313e-16)
- svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVR]
# test_non_uniform_strategies fails due to differences in handling of vacuous clusters after update
# See https://github.com/IntelPython/daal4py/issues/69
- cluster/tests/test_k_means.py::test_kmeans_relocated_clusters >=0.24
# oneAPI Data Analytics Library (oneDAL) does not check convergence for tol == 0.0 for ease of benchmarking
- cluster/tests/test_k_means.py::test_kmeans_convergence >=0.23
- cluster/tests/test_k_means.py::test_kmeans_verbose >=0.23
# Logistic Regression coeffs change due to fix for loss scaling
# (https://github.com/scikit-learn/scikit-learn/pull/26721)
- feature_selection/tests/test_from_model.py::test_importance_getter[estimator0-named_steps.logisticregression.coef_]
- linear_model/tests/test_sag.py::test_sag_pobj_matches_logistic_regression
# This fails on certain platforms. While weighted data does not go through DAAL,
# unweighted does. Since convergence does not occur (comment in the test
# suggests that) and because coefficients are slightly different,
# it results in a prediction disagreement in 1 case.
- ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]
# Insufficient accuracy of "coefs" and "intercept" in Elastic Net for multi-target problems
# https://github.com/uxlfoundation/oneDAL/issues/494
- linear_model/tests/test_coordinate_descent.py::test_enet_multitarget
# oneAPI Data Analytics Library (oneDAL) doesn't support sample_weight (back to scikit-learn),
# sufficient accuracy (similar to previous cases)
- linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency >=0.23
# Different interpretation of trees compared to scikit-learn
# Looks like we need to align tree traversal. This problem will be fixed
- ensemble/tests/test_forest.py::test_min_samples_leaf
# Different random number generation engine in oneDAL and scikit-learn
# The result is depend on random state, for random_state=777 in RandomForestClassifier the test is passed
- ensemble/tests/test_voting.py::test_majority_label_iris
# scikit-learn-intelex RF threads are used internally and are not explicitly specified
- ensemble/tests/test_forest.py::test_backend_respected
# scikit-learn-intelex does not support accessing trees through the result variable
- ensemble/tests/test_forest.py::test_warm_start
- inspection/tests/test_partial_dependence.py::test_recursion_decision_tree_vs_forest_and_gbdt[0] >=0.23
# scikit-learn-intelex implementation builds different trees compared to scikit-learn
# Comparison of tree forest will fail
- ensemble/tests/test_forest.py::test_class_weights
- ensemble/tests/test_forest.py::test_poisson_vs_mse
- inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature >=0.23
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[SVR()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[NuSVC()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[NuSVR()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[NuSVC()-check_class_weight_classifiers] <1.0
- tests/test_multioutput.py::test_multi_output_classification
# Linear Regression - minor mismatches in error/warning messages
- linear_model/tests/test_base.py::test_linear_regression_pd_sparse_dataframe_warning
# L1 Linear models with sklearn 1.1 + numpy > 1.25 - extra warnings from numpy lead to test fail
- linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-LassoCV] >=1.1,<1.2
- linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[True-1-ElasticNetCV] >=1.1,<1.2
- linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-LassoCV] >=1.1,<1.2
- linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[False-1-ElasticNetCV] >=1.1,<1.2
- linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-LassoCV] >=1.1,<1.2
- linear_model/tests/test_coordinate_descent.py::test_assure_warning_when_normalize[deprecated-0-ElasticNetCV] >=1.1,<1.2
# OOB scores in scikit-learn and oneDAL are different because of different random number generators
- ensemble/tests/test_forest.py::test_forest_regressor_oob[True-X0-y0-0.7-array-ExtraTreesRegressor] >=1.3
- ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-squared_error-float64] >=0.23 darwin
- ensemble/tests/test_forest.py::test_forest_regressor_oob[X0-y0-0.7-array-ExtraTreesRegressor]
- ensemble/tests/test_forest.py::test_warm_start_oob
- ensemble/tests/test_forest.py::test_distribution
# Different behavior when 1 class enters the input
- feature_selection/tests/test_rfe.py::test_rfe_cv_groups
# few-percent numerical differences in ExtraTreesRegressor, but 6 digits are checked
- ensemble/tests/test_forest.py::test_memory_layout[float64-ExtraTreesRegressor]
- ensemble/tests/test_forest.py::test_memory_layout[float32-ExtraTreesRegressor]
# module name should starts with 'sklearn.' but we have 'daal4py.sklearn.'
- metrics/tests/test_score_objects.py::test_scoring_is_not_metric
- utils/tests/test_estimator_checks.py::test_check_dataframe_column_names_consistency >=1.0
# Stability issue with max absolute difference: 4.33846826e-08/1.17613697e-11. Remove in next release
- ensemble/tests/test_bagging.py::test_estimators_samples_deterministic
# Some values in PCA.components_ (in the last component) aren't equal (0.6 on average
# for absolute error in this test) because of different implementations of PCA.
# The results are also not stable.
- decomposition/tests/test_incremental_pca.py::test_whitening
# The test fails because of changing of 'auto' strategy in PCA to improve performance.
# 'randomized' PCA expected, but 'full' is given.
- decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data3-10-randomized]
# Scikit-learn logistic regression predict depends from decision_function while d4p is not.
# Assertion error in check_estimator (PoorScoreLogisticRegression())
- utils/tests/test_estimator_checks.py::test_check_estimator >=0.24
# RandomForestRegressor sum(y_pred)!=sum(y_true)
- ensemble/tests/test_forest.py::test_balance_property_random_forest[squared_error] >=1.0
# This test fails because with patch config_context with new options, but the
# test checks only the exact number of options that are used
- tests/test_config.py::test_config_context
# Accuracy of scikit-learn-intelex and scikit-learn may differ due to different approaches
- manifold/tests/test_t_sne.py::test_bh_match_exact
- manifold/tests/test_t_sne.py::test_uniform_grid[barnes_hut]
# Failure related to incompatibility of older sklearn versions with updated dependencies
- utils/tests/test_validation.py::test_check_array_pandas_dtype_casting >=1.0,<1.2
- utils/tests/test_validation.py::test_check_sparse_pandas_sp_format <1.2
# Failure due to non-uniformity in the MT2203 engine causing
# bad Random Forest fits for small datasets with large n_estimators
# Had been solved by using MT19937, but oneDAL forces use of MT2203
- tests/test_multioutput.py::test_classifier_chain_tuple_order
# oneDAL decision forest trains individual trees differently than
# sklearn. Attempts to compare individual sklearn trees to oneDAL
# trees will fail, especially since two different RNGs are used.
- ensemble/tests/test_forest.py::test_estimators_samples
# Tests migrated from gpu deselection set starting from sklearn 1.4 for unknowm reason(s)
- ensemble/tests/test_bagging.py::test_estimators_samples >=1.4
- ensemble/tests/test_voting.py::test_sample_weight >=1.4
- svm/tests/test_svm.py::test_auto_weight >=1.4
- tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence >=1.4
- tests/test_calibration.py::test_calibrated_classifier_cv_zeros_sample_weights_equivalence >=1.4
- tests/test_common.py::test_estimators[LogisticRegression()-check_sample_weights_invariance(kind=ones)] >=1.4
- tests/test_common.py::test_estimators[LogisticRegression()-check_sample_weights_invariance(kind=zeros)] >=1.4
- tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_sparse_data >=1.4
# Deselected tests for incremental algorithms
# Need to rework getting policy to correctly obtain it for method without data (finalize_fit)
# and avoid keeping it in class attribute, also need to investigate how to implement
# partial result serialization
- tests/test_common.py::test_estimators[IncrementalLinearRegression()-check_estimators_pickle]
- tests/test_common.py::test_estimators[IncrementalLinearRegression()-check_estimators_pickle(readonly_memmap=True)]
- tests/test_common.py::test_estimators[IncrementalRidge()-check_estimators_pickle]
- tests/test_common.py::test_estimators[IncrementalRidge()-check_estimators_pickle(readonly_memmap=True)]
# There are not enough data to run onedal backend
- tests/test_common.py::test_estimators[IncrementalLinearRegression()-check_fit2d_1sample]
- tests/test_common.py::test_estimators[IncrementalRidge()-check_fit2d_1sample]
# Deselection of LogisticRegression tests over accuracy comparisons with sample_weights
# and without. Because scikit-learn-intelex does not support sample_weights, it's doing
# a fallback to scikit-learn in one case and not in the other, and needs to be investigated.
- model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_sample_weight >=1.5
- model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence >=1.5
# Deselections for 2025.0
- ensemble/tests/test_forest.py::test_importances[ExtraTreesRegressor-squared_error-float64]
- cluster/tests/test_k_means.py::test_kmeans_elkan_results
# Fails in stock scikit-learn: checks that data is modified in-place when not strictly required
- linear_model/tests/test_base.py::test_inplace_data_preprocessing
# Failure occurs in python3.9 on windows CPU only - not easy to reproduce
- ensemble/tests/test_weight_boosting.py::test_estimator >= 1.4 win32
# --------------------------------------------------------
# No need to test daal4py patching
reduced_tests:
- cluster/tests/test_affinity_propagation.py
- cluster/tests/test_bicluster.py
- cluster/tests/test_birch.py
- cluster/tests/test_mean_shift.py
- cluster/tests/test_optics.py
- compose/tests/test_column_transformer.py
- decomposition/tests/test_dict_learning.py
- decomposition/tests/test_factor_analysis.py
- decomposition/tests/test_nmf.py
- decomposition/tests/test_online_lda.py
- ensemble/tests/test_gradient_boosting.py
- ensemble/tests/test_gradient_boosting_loss_functions.py
- ensemble/tests/test_iforest.py
- feature_selection/tests/test_chi2.py
- feature_selection/tests/test_feature_select.py
- feature_selection/tests/test_mutual_info.py
- feature_selection/tests/test_sequential.py
- feature_selection/tests/test_from_model.py
- manifold/tests/test_isomap.py
- manifold/tests/test_locally_linear.py
- manifold/tests/test_spectral_embedding.py
- model_selection/tests/test_successive_halving.py
- neighbors/tests/test_ball_tree.py
- neighbors/tests/test_kd_tree.py
- neighbors/tests/test_quad_tree.py
- tests/test_kernel_approximation.py
- tests/test_docstring_parameters.py
- tests/test_dummy.py
- tests/test_random_projection.py
- tests/test_naive_bayes.py
- utils/tests/test_arpack.py
- utils/tests/test_cython_blas.py
- utils/tests/test_encode.py
- utils/tests/test_estimator_html_repr.py
- utils/tests/test_extmath.py
- utils/tests/test_fast_dict.py
- utils/tests/test_mocking.py
- utils/tests/test_murmurhash.py
- utils/tests/test_sparsefuncs.py
- utils/tests/test_utils.py
- _loss/
- cross_decomposition/
- datasets/
- ensemble/_hist_gradient_boosting/
- experimental/
- feature_extraction/
- gaussian_process/
- impute/
- inspection/
- neural_network/
- preprocessing/
public:
- tests/test_common.py::test_estimators
# Fails from numpy 2.0 and sklearn 1.4+
- neighbors/tests/test_neighbors.py::test_KNeighborsClassifier_raise_on_all_zero_weights
# --------------------------------------------------------
# The following tests currently fail with GPU offloading
gpu:
# Segfaults
- ensemble/tests/test_weight_boosting.py
# Fails
- cluster/tests/test_dbscan.py::test_weighted_dbscan
- cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse-normal]
- model_selection/tests/test_search.py::test_unsupervised_grid_search
- ensemble/tests/test_bagging.py::test_estimators_samples
- ensemble/tests/test_voting.py::test_sample_weight
- metrics/tests/test_score_objects.py::test_average_precision_pos_label
- model_selection/tests/test_search.py::test_search_default_iid
- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors
- neighbors/tests/test_neighbors.py::test_neighbors_metrics
- svm/tests/test_sparse.py::test_svc
- svm/tests/test_sparse.py::test_svc_iris
- svm/tests/test_sparse.py::test_sparse_realdata
- svm/tests/test_svm.py::test_precomputed
- svm/tests/test_svm.py::test_tweak_params
- svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator0]
- svm/tests/test_svm.py::test_svm_equivalence_sample_weight_C
- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-SVC]
- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-SVC]
- svm/tests/test_svm.py::test_svc_clone_with_callable_kernel
# sparse input is not implemented for DBSCAN.
- tests/test_common.py::test_estimators[RandomForestClassifier()-check_class_weight_classifiers]
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_not_an_array]
- tests/test_common.py::test_estimators[SVC()-check_classifier_data_not_an_array]
- tests/test_common.py::test_search_cv[RandomizedSearchCV(estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]})-check_classifiers_classes]
- tests/test_common.py::test_search_cv[RandomizedSearchCV(estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]})-check_decision_proba_consistency]
- tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_sparse_data
# Segmentation faults on GPU
- tests/test_common.py::test_search_cv
# Other device issues
- tests/test_multioutput.py::test_classifier_chain_tuple_order[list]
- tests/test_multioutput.py::test_classifier_chain_tuple_order[tuple]
# KD Tree (not implemented for GPU)
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-l2-1000-5-100]
- neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-l2-1000-5-100]
# failing due to numeric/code error
- linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegressionCV]
- sklearn/manifold/tests/test_t_sne.py::test_n_iter_without_progress
- model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]
- model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]
- tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence
- tests/test_calibration.py::test_calibrated_classifier_cv_zeros_sample_weights_equivalence
- tests/test_common.py::test_estimators[FeatureAgglomeration()-check_parameters_default_constructible]
- neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_subset_invariance]
- tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(estimators=[('est1',Ridge(alpha=0.1)),('est2',Ridge(alpha=1))])]
- tests/test_common.py::test_transformers_get_feature_names_out[VotingRegressor(estimators=[('est1',Ridge(alpha=0.1)),('est2',Ridge(alpha=1))])]
- tests/test_common.py::test_f_contiguous_array_estimator[TSNE]
- manifold/tests/test_t_sne.py::test_tsne_works_with_pandas_output
# GPU Forest algorithm implementation does not follow certain Scikit-learn standards
- ensemble/tests/test_forest.py::test_max_leaf_nodes_max_depth
- ensemble/tests/test_forest.py::test_min_samples_split[ExtraTreesClassifier]
- ensemble/tests/test_forest.py::test_min_samples_split[RandomForestClassifier]
- ensemble/tests/test_forest.py::test_min_samples_split[ExtraTreesRegressor]
- ensemble/tests/test_forest.py::test_max_samples_boundary_regressors
# numerical issues in GPU Forest algorithms which require further investigation
- ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_class_weight_classifiers]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_sample_weights_invariance(kind=zeros)]
- tests/test_common.py::test_estimators[RandomForestRegressor()-check_regressor_data_not_an_array]
- ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifier_data_not_an_array]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifiers_train]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_classifiers_train(readonly_memmap=True)]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_fit_idempotent]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_fit_idempotent]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_regressor_data_not_an_array]
# GPU implementation of Extra Trees doesn't support sample_weights
# comparisons to GPU with sample weights will use different algorithms
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_sample_weights_invariance(kind=ones)]
- tests/test_common.py::test_estimators[ExtraTreesClassifier()-check_sample_weights_invariance(kind=zeros)]
- tests/test_common.py::test_estimators[ExtraTreesRegressor()-check_sample_weights_invariance(kind=ones)]
# RuntimeError: Device support is not implemented, failing as result of fallback to cpu false
- svm/tests/test_svm.py::test_unfitted
- tests/test_common.py::test_estimators[SVC()-check_estimators_unfitted]