-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHahnBase.v
528 lines (425 loc) · 19.3 KB
/
HahnBase.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
(* Imported from https://github.com/vafeiadis/hahn *)
(* ************************************************************************** *)
(** * Basic tactics *)
(* ************************************************************************** *)
(** This file collects a number of basic tactics for better proof automation,
structuring large proofs, or rewriting. Many of the definitions have been
ported from ss-reflect. *)
(** Symbols starting with [hahn__] are internal. *)
Require Import Bool Arith ZArith String.
Require ClassicalFacts.
Require Export Classical FunctionalExtensionality ProofIrrelevance.
Open Scope bool_scope.
Open Scope list_scope.
Set Implicit Arguments.
Unset Strict Implicit.
(** Shorthand for applying functional extensionality. *)
Ltac exten := apply functional_extensionality.
(* ************************************************************************** *)
(** ** Coersion of [bool] into [Prop] *)
(* ************************************************************************** *)
(** Coersion of bools into Prop *)
Coercion is_true (b : bool) : Prop := b = true.
(** Hints for auto *)
Lemma hahn__true_is_true : true.
Proof. reflexivity. Qed.
Lemma hahn__not_false_is_true : ~ false.
Proof. discriminate. Qed.
Hint Resolve hahn__true_is_true hahn__not_false_is_true.
(* ************************************************************************** *)
(** ** Very basic automation *)
(* ************************************************************************** *)
(** Set up for basic simplification *)
Create HintDb hahn discriminated.
(** Adaptation of the ss-reflect "[done]" tactic. *)
Ltac hahn__basic_done :=
solve [trivial with hahn | apply sym_equal; trivial | discriminate | contradiction].
Ltac done := trivial with hahn; hnf; intros;
solve [try hahn__basic_done; split;
try hahn__basic_done; split;
try hahn__basic_done; split;
try hahn__basic_done; split;
try hahn__basic_done; split; hahn__basic_done
| match goal with H : ~ _ |- _ => solve [case H; trivial] end].
(** A variant of the ssr "done" tactic that performs "eassumption". *)
Ltac edone := try eassumption; trivial; hnf; intros;
solve [try eassumption; try hahn__basic_done; split;
try eassumption; try hahn__basic_done; split;
try eassumption; try hahn__basic_done; split;
try eassumption; try hahn__basic_done; split;
try eassumption; try hahn__basic_done; split;
try eassumption; hahn__basic_done
| match goal with H : ~ _ |- _ => solve [case H; trivial] end].
Tactic Notation "by" tactic(tac) := (tac; done).
Tactic Notation "eby" tactic(tac) := (tac; edone).
(* ************************************************************************** *)
(** ** Equality types *)
(* ************************************************************************** *)
Module Equality.
Definition axiom T (e : T -> T -> bool) :=
forall x y, reflect (x = y) (e x y).
Structure mixin_of T := Mixin {op : T -> T -> bool; _ : axiom op}.
Notation class_of := mixin_of (only parsing).
Section ClassDef.
Structure type := Pack {sort; _ : class_of sort; _ : Type}.
Definition class cT' :=
match cT' return class_of (sort cT') with @Pack _ c _ => c end.
Definition pack (T: Type) c := @Pack T c T.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Notation eqType := type.
Notation EqMixin := Mixin.
Notation EqType T m := (@pack T m).
End Exports.
End Equality.
Export Equality.Exports.
Definition eq_op T := Equality.op (Equality.class T).
Arguments eq_op {T}.
Lemma eqE : forall T x, eq_op x = Equality.op (Equality.class T) x.
Proof. done. Qed.
Lemma eqP : forall T, Equality.axiom (@eq_op T).
Proof. by unfold eq_op; destruct T as [? []]. Qed.
Arguments eqP [T] x y.
Notation "x == y" := (eq_op x y)
(at level 70, no associativity) : bool_scope.
Notation "x == y :> T" := ((x : T) == (y : T))
(at level 70, y at next level) : bool_scope.
Notation "x != y" := (negb (x == y))
(at level 70, no associativity) : bool_scope.
Notation "x != y :> T" := (negb (x == y :> T))
(at level 70, y at next level) : bool_scope.
Lemma hahn__internal_eqP :
forall (T: eqType) (x y : T), reflect (x = y) (x == y).
Proof. apply eqP. Qed.
Lemma neqP : forall (T: eqType) (x y: T), reflect (x <> y) (x != y).
Proof. intros; case eqP; constructor; auto. Qed.
Lemma beq_refl : forall (T : eqType) (x : T), x == x.
Proof. by intros; case eqP. Qed.
Lemma beq_sym : forall (T : eqType) (x y : T), (x == y) = (y == x).
Proof. intros; do 2 case eqP; congruence. Qed.
Hint Resolve beq_refl : hahn.
Hint Rewrite beq_refl : hahn_trivial.
Notation eqxx := beq_refl.
(** Comparison for [nat] *)
Fixpoint eqn_rec (x y: nat) {struct x} :=
match x, y with
| O, O => true
| S x, S y => eqn_rec x y
| _, _ => false
end.
Definition eqn := match tt with tt => eqn_rec end.
Lemma eqnP: forall x y, reflect (x = y) (eqn x y).
Proof.
induction x; destruct y; try (constructor; done).
change (eqn (S x) (S y)) with (eqn x y).
case IHx; constructor; congruence.
Qed.
Canonical Structure nat_eqMixin := EqMixin eqnP.
Canonical Structure nat_eqType := Eval hnf in EqType nat nat_eqMixin.
Lemma eqnE : eqn = (@eq_op _).
Proof. done. Qed.
(* ************************************************************************** *)
(** ** Basic simplification tactics *)
(* ************************************************************************** *)
Lemma hahn__negb_rewrite : forall b, negb b -> b = false.
Proof. by intros []. Qed.
Lemma hahn__andb_split : forall b1 b2, b1 && b2 -> b1 /\ b2.
Proof. by intros [] []. Qed.
Lemma hahn__nandb_split : forall b1 b2, b1 && b2 = false -> b1 = false \/ b2 = false.
Proof. intros [] []; auto. Qed.
Lemma hahn__orb_split : forall b1 b2, b1 || b2 -> b1 \/ b2.
Proof. intros [] []; auto. Qed.
Lemma hahn__norb_split : forall b1 b2, b1 || b2 = false -> b1 = false /\ b2 = false.
Proof. intros [] []; auto. Qed.
Lemma hahn__eqb_split : forall b1 b2 : bool, (b1 -> b2) -> (b2 -> b1) -> b1 = b2.
Proof. intros [] [] H H'; unfold is_true in *; auto using sym_eq. Qed.
Lemma hahn__beq_rewrite : forall (T : eqType) (x1 x2 : T), x1 == x2 -> x1 = x2.
Proof. by intros until 0; case eqP. Qed.
(** Set up for basic simplification: database of reflection lemmas *)
Create HintDb hahn_refl discriminated.
Hint Resolve hahn__internal_eqP neqP : hahn_refl.
Ltac hahn__complaining_inj f H :=
let X := fresh in
(match goal with | [|- ?P ] => set (X := P) end);
injection H; clear H; intros; subst X;
try subst.
Ltac hahn__clarify1 :=
try subst;
repeat match goal with
| [H: is_true (andb _ _) |- _] =>
let H' := fresh H in case (hahn__andb_split H); clear H; intros H' H
| [H: is_true (negb ?x) |- _] => rewrite (hahn__negb_rewrite H) in *
| [H: is_true ?x |- _] => rewrite H in *
| [H: ?x = true |- _] => rewrite H in *
| [H: ?x = false |- _] => rewrite H in *
| [H: is_true (_ == _) |- _] => generalize (hahn__beq_rewrite H); clear H; intro H
| [H: @existT _ _ _ _ = @existT _ _ _ _ |- _] => apply inj_pair2 in H; try subst
| [H: ?f _ = ?f _ |- _] => hahn__complaining_inj f H
| [H: ?f _ _ = ?f _ _ |- _] => hahn__complaining_inj f H
| [H: ?f _ _ _ = ?f _ _ _ |- _] => hahn__complaining_inj f H
| [H: ?f _ _ _ _ = ?f _ _ _ _ |- _] => hahn__complaining_inj f H
| [H: ?f _ _ _ _ _ = ?f _ _ _ _ _ |- _] => hahn__complaining_inj f H
| [H: ?f _ _ _ _ _ _ = ?f _ _ _ _ _ _ |- _] => hahn__complaining_inj f H
| [H: ?f _ _ _ _ _ _ _ = ?f _ _ _ _ _ _ _ |- _] => hahn__complaining_inj f H
end; try done.
(** Perform injections & discriminations on all hypotheses *)
Ltac clarify :=
hahn__clarify1;
repeat match goal with
| H1: ?x = Some _, H2: ?x = None |- _ => rewrite H2 in H1; discriminate
| H1: ?x = Some _, H2: ?x = Some _ |- _ => rewrite H2 in H1; hahn__clarify1
end; (* autorewrite with hahn_trivial; *) try done.
(** Kill simple goals that require up to two econstructor calls. *)
Ltac vauto :=
(clarify; try edone;
try [> econstructor; (solve [edone | [> econstructor; edone]])]).
Ltac inv x := inversion x; clarify.
Ltac simpls := simpl in *; try done.
Ltac ins := simpl in *; try done; intros.
Ltac hahn__clarsimp1 :=
clarify; (autorewrite with hahn_trivial hahn in * );
(autorewrite with hahn_trivial in * ); try done;
clarify; auto 1 with hahn.
Ltac clarsimp := intros; simpl in *; hahn__clarsimp1.
Ltac autos := clarsimp; auto with hahn.
Tactic Notation "econs" := econstructor.
Tactic Notation "econs" int_or_var(x) := econstructor x.
(* ************************************************************************** *)
(** Destruct but give useful names *)
(* ************************************************************************** *)
Definition NW (P: unit -> Prop) : Prop := P tt.
Notation "⟪ x : t ⟫" := (NW (fun x => t)) (at level 80, x ident, no associativity).
Notation "<< x : t >>" := (NW (fun x => t))
(at level 80, x ident, no associativity, only parsing).
Notation "⟪ t ⟫" := (NW (fun _ => t)) (at level 79, no associativity, format "⟪ t ⟫").
Ltac unnw := unfold NW in *.
Ltac rednw := red; unnw.
Hint Unfold NW.
Ltac splits :=
intros; unfold NW;
repeat match goal with
| [ |- _ /\ _ ] => split
end.
Ltac esplits :=
intros; unfold NW;
repeat match goal with
| [ |- @ex _ _ ] => eexists
| [ |- _ /\ _ ] => split
| [ |- @sig _ _ ] => eexists
| [ |- @sigT _ _ ] => eexists
| [ |- @prod _ _ ] => split
end.
(** Destruct, but no case split *)
Ltac desc :=
repeat match goal with
| H: is_true (_ == _) |- _ => generalize (hahn__beq_rewrite H); clear H; intro H
| H : exists x, NW (fun y => _) |- _ =>
let x' := fresh x in let y' := fresh y in destruct H as [x' y']; red in y'
| H : exists x, ?p |- _ =>
let x' := fresh x in destruct H as [x' H]
| H : ?p /\ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => red in x' | _ => idtac end;
match q with | NW _ => red in y' | _ => idtac end
| H : is_true (_ && _) |- _ =>
let H' := fresh H in case (hahn__andb_split H); clear H; intros H H'
| H : (_ || _) = false |- _ =>
let H' := fresh H in case (hahn__norb_split H); clear H; intros H H'
| H : ?x = ?x |- _ => clear H
(* | H: is_true ?x |- _ => eapply elimT in H; [|solve [trivial with hahn_refl]]
| H: ?x = true |- _ => eapply elimT in H; [|solve [trivial with hahn_refl]]
| H: ?x = false |- _ => eapply elimFn in H; [|solve [trivial with hahn_refl]]
| H: ?x = false |- _ => eapply elimF in H; [|solve [trivial with hahn_refl]] *)
end.
Ltac des :=
repeat match goal with
| H: is_true (_ == _) |- _ => generalize (hahn__beq_rewrite H); clear H; intro H
| H : exists x, NW (fun y => _) |- _ =>
let x' := fresh x in let y' := fresh y in destruct H as [x' y']; red in y'
| H : exists x, ?p |- _ =>
let x' := fresh x in destruct H as [x' H]
| H : ?p /\ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => red in x' | _ => idtac end;
match q with | NW _ => red in y' | _ => idtac end
| H : is_true (_ && _) |- _ =>
let H' := fresh H in case (hahn__andb_split H); clear H; intros H H'
| H : (_ || _) = false |- _ =>
let H' := fresh H in case (hahn__norb_split H); clear H; intros H H'
| H : ?x = ?x |- _ => clear H
| H : ?p <-> ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => fresh H end in
destruct H as [x' y'];
match p with | NW _ => unfold NW at 1 in x'; red in y' | _ => idtac end;
match q with | NW _ => unfold NW at 1 in y'; red in x' | _ => idtac end
| H : ?p \/ ?q |- _ =>
let x' := match p with | NW (fun z => _) => fresh z | _ => H end in
let y' := match q with | NW (fun z => _) => fresh z | _ => H end in
destruct H as [x' | y'];
[ match p with | NW _ => red in x' | _ => idtac end
| match q with | NW _ => red in y' | _ => idtac end]
| H : is_true (_ || _) |- _ => case (hahn__orb_split H); clear H; intro H
| H : (_ && _) = false |- _ => case (hahn__nandb_split H); clear H; intro H
end.
Ltac cdes H :=
let H' := fresh H in assert (H' := H); red in H'; desc.
Ltac des_if_asm :=
clarify;
repeat
match goal with
| H: context[ match ?x with _ => _ end ] |- _ =>
match (type of x) with
| { _ } + { _ } => destruct x; clarify
| bool =>
let Heq := fresh "Heq" in
let P := fresh in
evar(P: Prop);
assert (Heq: reflect P x) by (subst P; trivial with hahn_refl);
subst P; destruct Heq as [Heq|Heq]
| _ => let Heq := fresh "Heq" in destruct x as [] eqn: Heq; clarify
end
end.
Ltac des_if_goal :=
clarify;
repeat
match goal with
| |- context[match ?x with _ => _ end] =>
match (type of x) with
| { _ } + { _ } => destruct x; clarify
| bool =>
let Heq := fresh "Heq" in
let P := fresh in
evar(P: Prop);
assert (Heq: reflect P x) by (subst P; trivial with hahn_refl);
subst P; destruct Heq as [Heq|Heq]
| _ => let Heq := fresh "Heq" in destruct x as [] eqn: Heq; clarify
end
end.
Ltac des_if :=
clarify;
repeat
match goal with
| |- context[match ?x with _ => _ end] =>
match (type of x) with
| { _ } + { _ } => destruct x; clarify
| bool =>
let Heq := fresh "Heq" in
let P := fresh in
evar(P: Prop);
assert (Heq: reflect P x) by (subst P; trivial with hahn_refl);
subst P; destruct Heq as [Heq|Heq]
| _ => let Heq := fresh "Heq" in destruct x as [] eqn: Heq; clarify
end
| H: context[ match ?x with _ => _ end ] |- _ =>
match (type of x) with
| { _ } + { _ } => destruct x; clarify
| bool =>
let Heq := fresh "Heq" in
let P := fresh in
evar(P: Prop);
assert (Heq: reflect P x) by (subst P; trivial with hahn_refl);
subst P; destruct Heq as [Heq|Heq]
| _ => let Heq := fresh "Heq" in destruct x as [] eqn: Heq; clarify
end
end.
Ltac des_eqrefl :=
match goal with
| H: context[match ?X with _ => _ end Logic.eq_refl] |- _ =>
let EQ := fresh "EQ" in
let id' := fresh "x" in
revert H;
generalize (Logic.eq_refl X); generalize X at 1 3;
intros id' EQ; destruct id'; intros H
| |- context[match ?X with _ => _ end Logic.eq_refl] =>
let EQ := fresh "EQ" in
let id' := fresh "x" in
generalize (Logic.eq_refl X); generalize X at 1 3;
intros id' EQ; destruct id'
end.
Ltac desf_asm := clarify; des; des_if_asm.
Ltac desf := clarify; des; des_if.
Ltac clarassoc := clarsimp; autorewrite with hahn_trivial hahn hahnA in *; try done.
Ltac hahn__hacksimp1 :=
clarsimp;
match goal with
| H: _ |- _ => solve [rewrite H; clear H; clarsimp
|rewrite <- H; clear H; clarsimp]
| _ => solve [f_equal; clarsimp]
end.
Ltac hacksimp :=
clarsimp;
try match goal with
| H: _ |- _ => solve [rewrite H; clear H; clarsimp
|rewrite <- H; clear H; clarsimp]
| |- context[match ?p with _ => _ end] => solve [destruct p; hahn__hacksimp1]
| _ => solve [f_equal; clarsimp]
end.
(* ************************************************************************** *)
(** ** Unification helpers *)
(* ************************************************************************** *)
Tactic Notation "pattern_lhs" uconstr(term) :=
match goal with
|- _ ?lhs _ =>
let P := fresh in
pose (P := lhs); pattern term in P; change lhs with P; subst P
end.
Tactic Notation "pattern_rhs" uconstr(term) :=
match goal with
|- _ _ ?rhs =>
let P := fresh in
pose (P := rhs); pattern term in P; change rhs with P; subst P
end.
(* ************************************************************************** *)
(** ** Exploiting a hypothesis *)
(* ************************************************************************** *)
Tactic Notation "forward" tactic1(tac) :=
let foo := fresh in
evar (foo : Prop); cut (foo); subst foo; cycle 1; [tac|].
Tactic Notation "forward" tactic1(tac) "as" simple_intropattern(H) :=
let foo := fresh in
evar (foo : Prop); cut (foo); subst foo; cycle 1; [tac|intros H].
Tactic Notation "specialize_full" ident(H) :=
let foo := fresh in
evar (foo : Prop); cut (foo); subst foo; cycle 1; [eapply H|try clear H; intro H].
(** Exploit an assumption (adapted from CompCert). *)
Ltac exploit x :=
refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _ _) _)
|| refine ((fun x y => y x) (x _ _ _) _)
|| refine ((fun x y => y x) (x _ _) _)
|| refine ((fun x y => y x) (x _) _).