-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessingEmbeddings.py
82 lines (66 loc) · 2.43 KB
/
preprocessingEmbeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from imutils import paths
import numpy as np
import imutils
import pickle
import cv2
import os
def embeddings():
dataset = "dataset"
embeddingFile = "output/embeddings.pickle" #initial name for embedding file
embeddingModel = "openface_nn4.small2.v1.t7" #initializing model for embedding Pytorch
#initialization of caffe model for face detection
prototxt = "model/deploy.prototxt"
model = "model/res10_300x300_ssd_iter_140000.caffemodel"
#loading caffe model for face detection
#detecting face from Image via Caffe deep learning
detector = cv2.dnn.readNetFromCaffe(prototxt, model)
#loading pytorch model file for extract facial embeddings
#extracting facial embeddings via deep learning feature extraction
embedder = cv2.dnn.readNetFromTorch(embeddingModel)
#gettiing image paths
imagePaths = list(paths.list_images(dataset))
#initialization
knownEmbeddings = []
knownNames = []
total = 0
conf = 0.5
#we start to read images one by one to apply face detection and embedding
for (i, imagePath) in enumerate(imagePaths):
print("Processing image {}/{}".format(i + 1,len(imagePaths)))
name = imagePath.split(os.path.sep)[-2]
image = cv2.imread(imagePath)
image = imutils.resize(image, width=600)
(h, w) = image.shape[:2]
#converting image to blob for dnn face detection
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 1.0, (300, 300),(104.0, 177.0, 123.0), swapRB=False, crop=False)
#setting input blob image
detector.setInput(imageBlob)
#prediction the face
detections = detector.forward()
if len(detections) > 0:
i = np.argmax(detections[0, 0, :, 2])
confidence = detections[0, 0, i, 2]
if confidence > conf:
#ROI range of interest
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
face = image[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
if fW < 20 or fH < 20:
continue
#image to blob for face
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False)
#facial features embedder input image face blob
embedder.setInput(faceBlob)
vec = embedder.forward()
knownNames.append(name)
knownEmbeddings.append(vec.flatten())
total += 1
print("Embedding:{0} ".format(total))
data = {"embeddings": knownEmbeddings, "names": knownNames}
f = open(embeddingFile, "wb")
f.write(pickle.dumps(data))
f.close()
print("Process Completed")
embeddings()