-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognizingPersonwithCSVDatabase.py
160 lines (138 loc) · 5.14 KB
/
recognizingPersonwithCSVDatabase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from collections import Iterable
import numpy as np
import imutils
import pickle
import time
import cv2
import csv
from datetime import datetime
import pandas as pd
import collections
def flatten(lis):
for item in lis:
if isinstance(item, Iterable) and not isinstance(item, str):
for x in flatten(item):
yield x
else:
yield item
timeout = time.time()+ 60
count_num=0
embeddingFile = "output/embeddings.pickle"
embeddingModel = "openface_nn4.small2.v1.t7"
recognizerFile = "output/recognizer.pickle"
labelEncFile = "output/le.pickle"
conf = 0.5
print("[INFO] loading face detector...")
prototxt = "model/deploy.prototxt"
model = "model/res10_300x300_ssd_iter_140000.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt, model)
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(embeddingModel)
recognizer = pickle.loads(open(recognizerFile, "rb").read())
le = pickle.loads(open(labelEncFile, "rb").read())
Roll_Number = ""
box = []
print("[INFO] starting video stream...")
cam = cv2.VideoCapture(0)
time.sleep(2.0)
name_list = []
rollno_list = []
accuracy_list =[]
time_list = []
while True:
_, frame = cam.read()
frame = imutils.resize(frame, width=600)
(h, w) = frame.shape[:2]
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(frame, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
detector.setInput(imageBlob)
detections = detector.forward()
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
face = frame[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
if fW < 20 or fH < 20:
continue
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec = embedder.forward()
preds = recognizer.predict_proba(vec)[0]
j = np.argmax(preds)
proba = preds[j]
name = le.classes_[j]
with open('student.csv', 'r') as csvFile:
reader = csv.reader(csvFile)
for row in reader:
box = np.append(box, row)
name = str(name)
if name in row:
person = str(row)
count_num += 1
print(name)
print(proba*100)
listString = str(box)
if name in listString:
singleList = list(flatten(box))
listlen = len(singleList)
Index = singleList.index(name)
name = singleList[Index]
Roll_Number = singleList[Index + 1]
print(Roll_Number)
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
if (round(proba*100))>70:
name_list.append(name)
rollno_list.append(Roll_Number)
time_list.append(dtString)
accuracy_list.append((round(proba*100)))
text = "{} : {} : {:.2f}%".format(name, Roll_Number, proba * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(frame, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == 27 or time.time()>timeout:
break
time.sleep(0.3)
dict_mark = {'rollno': rollno_list, 'name': name_list, 'time': time_list, 'accuracy': accuracy_list}
counter = collections.Counter(rollno_list)
pre_rollno = []
for nam in counter:
print(f"{nam} -> {round((counter[nam]/len(name_list))*100)}")
if (round((counter[nam]/len(name_list))*100))> 10:
pre_rollno.append(int(nam))
df = pd.DataFrame(dict_mark)
df.to_csv('file2.csv', index=False)
student_data = pd.read_csv("student.csv")
student_data = student_data.to_dict(orient="records")
now2 = datetime.now()
date_str = now2.strftime("%d-%m-%Y")
student_data = pd.read_csv("student.csv")
student_data = student_data.to_dict(orient="records")
namePresent = []
roll_absent = []
name_absent = []
for dic in student_data:
if dic["Roll_No"] in pre_rollno:
namePresent.append(dic["name"])
else:
name_absent.append(dic["name"])
roll_absent.append(dic["Roll_No"])
dict_present = {"Roll_no": pre_rollno, "name": namePresent, "attendance": ["P" for i in pre_rollno]}
df2 = pd.DataFrame(dict_present)
dict_absent = {"Roll_no": roll_absent, "name": name_absent, "attendance": "A"}
df3 = pd.DataFrame(dict_absent)
df4 = pd.concat([df2, df3], ignore_index=True)
df4.reset_index()
df4 = df4.sort_values(by=['Roll_no'])
df4.to_csv(f"{date_str}.csv", index=False)
#print(count_num)
print(df4)
cam.release()
cv2.destroyAllWindows()