diff --git a/brainage/neural_net.py b/brainage/neural_net.py index 11a1a4e..406bd27 100644 --- a/brainage/neural_net.py +++ b/brainage/neural_net.py @@ -23,7 +23,7 @@ def create_nn(input_shape, optimizer = 'rmsprop', dropout = 0.05, summary = False): - """ + """ Create a neural network model using Keras API in order to solve a regression problem. :param input_shape: shape of the data given to the input layer of the NN @@ -67,7 +67,7 @@ def create_nn(input_shape, return model def training(features, targets, model, epochs, **kwargs): - """ + """ Train a neural network using k-fold cross-validation. The function can show actual vs predicted brain age scatter plot and training history plot. diff --git a/brainage/regression.py b/brainage/regression.py index 931741f..b3b7fd7 100644 --- a/brainage/regression.py +++ b/brainage/regression.py @@ -121,7 +121,7 @@ def regression(type, features, targets, n_splits): def reg_parsing(): - """ + """ regression function parsed that runs when the .py file is called. It performs regression (linear or gaussian) with k-fold cross-validation predicting the age of patients from magnetic resonance imaging and diff --git a/brainage/utils.py b/brainage/utils.py index 523d200..b5638b2 100644 --- a/brainage/utils.py +++ b/brainage/utils.py @@ -37,7 +37,7 @@ def abs_path(local_filename, data_folder): return data_file_path def mean_spurious(df): - """ + """ Handles spurious 0 and -9999 values in the data, if the dataset is not properly cleaned before. This function will replace 0 and -9999 values with the mean of respective columns