forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
reppoints-moment_r50_fpn_1x_coco.py
74 lines (73 loc) · 2.23 KB
/
reppoints-moment_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
type='RepPointsDetector',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='RepPointsHead',
num_classes=80,
in_channels=256,
feat_channels=256,
point_feat_channels=256,
stacked_convs=3,
num_points=9,
gradient_mul=0.1,
point_strides=[8, 16, 32, 64, 128],
point_base_scale=4,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
transform_method='moment'),
# training and testing settings
train_cfg=dict(
init=dict(
assigner=dict(type='PointAssigner', scale=4, pos_num=1),
allowed_border=-1,
pos_weight=-1,
debug=False),
refine=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False)),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
optim_wrapper = dict(optimizer=dict(lr=0.01))