diff --git a/src/sage/combinat/rigged_configurations/kleber_tree.py b/src/sage/combinat/rigged_configurations/kleber_tree.py index e82b6c28035..551c975ce76 100644 --- a/src/sage/combinat/rigged_configurations/kleber_tree.py +++ b/src/sage/combinat/rigged_configurations/kleber_tree.py @@ -122,11 +122,11 @@ def _draw_tree(tree_node, node_label=True, style_point=None, style_node='fill=wh start = [0., 0.] if rpos is None: rpos = [0., 0.] - draw_point = lambda point: '(%.3f, %.3f)' % (point[0],point[1]) + if not tree_node.children: r = '' node_name = node_prefix + str(node_id) - r = "\\node (%s) at %s" % (node_name, draw_point(start)) + r = "\\node (%s) at (%.3f, %.3f)" % (node_name, *start) if node_label: r += "{$%s$};\n" % tree_node._latex_() else: @@ -149,7 +149,7 @@ def _draw_tree(tree_node, node_label=True, style_point=None, style_node='fill=wh nb_children = len(tree_node.children) half = nb_children // 2 children_str = '' - pos = [start[0],start[1]] + pos = [start[0], start[1]] start[1] += vspace lines_str = '' @@ -184,7 +184,7 @@ def _draw_tree(tree_node, node_label=True, style_point=None, style_node='fill=wh rpos[0] = pos[0] rpos[1] = pos[1] point_str = '' - node_str = "\\node%s (%s) at %s" % (style_node, node_name, draw_point(pos)) + node_str = "\\node%s (%s) at (%.3f, %.3f)" % (style_node, node_name, *pos) if node_label: node_str += "{$%s$};\n" % tree_node._latex_() else: @@ -269,7 +269,7 @@ def depth(self): sage: n2.depth 1 """ - depth = -1 # Offset + depth = -1 # Offset cur = self while cur is not None: depth += 1 @@ -337,7 +337,7 @@ def multiplicity(self): mult = Integer(1) for a, m in self.up_root: p = self.weight[a] - for r,s in self.parent().B: + for r, s in self.parent().B: if r == a and s > self.depth: p -= s - self.depth mult *= binomial(m + p, m) @@ -346,7 +346,7 @@ def multiplicity(self): cur = self.parent_node while cur.parent_node is not None: root_diff = cur.up_root - prev_up_root - for a,m in root_diff: + for a, m in root_diff: p = cur.weight[a] for r, s in self.parent().B: if r == a and s > cur.depth: @@ -636,7 +636,8 @@ def __init__(self, cartan_type, B, classical_ct): self._CM = self._classical_ct.cartan_matrix().dense_matrix() self._build_tree() self._latex_options = dict(edge_labels=True, use_vector_notation=False, - hspace=2.5, vspace=min(-2.5, -0.75*self._classical_ct.rank())) + hspace=2.5, + vspace=min(-2.5, -0.75*self._classical_ct.rank())) def latex_options(self, **options): """ @@ -705,21 +706,19 @@ def _build_tree(self): # Create an empty node at first step self.root = KleberTreeNode(self, P.zero(), self._classical_ct.root_system().root_lattice().zero()) - full_list = [self.root] # The list of tree nodes + full_list = [self.root] # The list of tree nodes n = self._classical_ct.rank() # Convert the B values into an L matrix - L = [] I = self._classical_ct.index_set() - for i in range(n): - L.append([0]) + L = [[0] for _ in range(n)] - for r,s in self.B: - while len(L[0]) < s: # Add more columns if needed + for r, s in self.B: + while len(L[0]) < s: # Add more columns if needed for row in L: row.append(0) - L[I.index(r)][s - 1] += 1 # The -1 is for indexing + L[I.index(r)][s - 1] += 1 # The -1 is for indexing # Perform a special case of the algorithm for the root node weight_basis = P.basis() @@ -751,7 +750,7 @@ def _build_tree(self): for x in full_list: growth = True for a in range(n): - for i in range(depth - 1, len(L[a])): # Subtract 1 for indexing + for i in range(depth - 1, len(L[a])): # Subtract 1 for indexing x.weight += L[a][i] * weight_basis[I[a]] new_children = [new_child @@ -824,16 +823,16 @@ def _children_iter(self, node): # Construct the shifted weight cone root_weight = node.weight.to_vector() ieqs = [[root_weight[i]] + list(col) - for i,col in enumerate(self._CM.columns())] + for i, col in enumerate(self._CM.columns())] # Construct the negative weight cone for i in range(n): v = [0] * (n+1) v[i+1] = -1 ieqs.append(v) - ieqs.append([-1]*(n+1)) # For avoiding the origin + ieqs.append([-1]*(n+1)) # For avoiding the origin # Construct the bounds for the non-root nodes if node != self.root: - for i,c in enumerate(node.up_root.to_vector()): + for i, c in enumerate(node.up_root.to_vector()): v = [0] * (n+1) v[0] = c v[i+1] = 1 @@ -849,9 +848,9 @@ def _children_iter(self, node): # Build the nodes from the polytope # Sort for a consistent ordering (it is typically a small list) for pt in sorted(poly.integral_points(), reverse=True): - up_root = Q._from_dict({I[i]: -val for i,val in enumerate(pt) if val != 0}, + up_root = Q._from_dict({I[i]: -val for i, val in enumerate(pt) if val != 0}, remove_zeros=False) - wt = node.weight + sum(val * P.simple_root(I[i]) for i,val in enumerate(pt)) + wt = node.weight + sum(val * P.simple_root(I[i]) for i, val in enumerate(pt)) yield KleberTreeNode(self, wt, up_root, node) def _children_iter_vector(self, node): @@ -895,9 +894,9 @@ def _children_iter_vector(self, node): converted_root = sum(cols[i] * c for i, c in enumerate(root) if c != 0) - if all(wt[i] >= val for i,val in enumerate(converted_root)): - wd = {I[i]: wt[i] - val for i,val in enumerate(converted_root)} - rd = {I[i]: val for i,val in enumerate(root) if val != 0} + if all(wt[i] >= val for i, val in enumerate(converted_root)): + wd = {I[i]: wt[i] - val for i, val in enumerate(converted_root)} + rd = {I[i]: val for i, val in enumerate(root) if val != 0} yield KleberTreeNode(self, P._from_dict(wd), Q._from_dict(rd, remove_zeros=False), @@ -1171,14 +1170,12 @@ def __init__(self, cartan_type, B): sage: TestSuite(KT).run(skip='_test_elements') """ self._folded_ct = cartan_type.as_folding() - virtual_dims = [] self.base_dims = B sigma = self._folded_ct.folding_orbit() gamma = self._folded_ct.scaling_factors() classical_ct = self._folded_ct.folding_of().classical() - for r,s in B: - for i in sigma[r]: - virtual_dims.append([i, s * gamma[r]]) + virtual_dims = [[i, s * gamma[r]] + for r, s in B for i in sigma[r]] KleberTree.__init__(self, cartan_type, virtual_dims, classical_ct) @@ -1229,8 +1226,9 @@ def _prune(self, new_child, depth): return True gamma = self._folded_ct.scaling_factors() for a in range(1, len(gamma)): - if (depth - 1) % gamma[a] != 0 and new_child.up_root[sigma[a][0]] \ - != new_child.parent_node.up_root[sigma[a][0]]: + s = sigma[a][0] + if ((depth - 1) % gamma[a] != 0 and + new_child.up_root[s] != new_child.parent_node.up_root[s]): return True return False @@ -1371,12 +1369,11 @@ def __init__(self, cartan_type, B): self.base_dims = B sigma = self._folded_ct.folding_orbit() classical_ct = self._folded_ct.folding_of().classical() - for r,s in B: + for r, s in B: if r == n: virtual_dims.extend([[n, s], [n, s]]) else: - for i in sigma[r]: - virtual_dims.append([i, s]) + virtual_dims.extend([i, s] for i in sigma[r]) KleberTree.__init__(self, cartan_type, virtual_dims, classical_ct) diff --git a/src/sage/combinat/tableau.py b/src/sage/combinat/tableau.py index 80e3391b279..aace1ba5a2c 100644 --- a/src/sage/combinat/tableau.py +++ b/src/sage/combinat/tableau.py @@ -2055,14 +2055,14 @@ def k_weight(self, k): w = self.weight() s = self.cells() - for l in range(1, len(w)+1): + for l in range(1, len(w) + 1): new_s = [(i, j) for i, j in s if self[i][j] == l] # If there are no elements that meet the condition - if new_s == []: + if not new_s: res.append(0) continue - x = set((i-j) % (k+1) for i, j in new_s) + x = {(i - j) % (k + 1) for i, j in new_s} res.append(len(x)) return res @@ -2955,9 +2955,8 @@ def row_stabilizer(self): # tableau, by including the identity permutation on the set [1..k]. k = self.size() gens = [list(range(1, k + 1))] - for row in self: - for j in range(len(row) - 1): - gens.append((row[j], row[j + 1])) + gens.extend((row[j], row[j + 1]) + for row in self for j in range(len(row) - 1)) return PermutationGroup(gens) def column_stabilizer(self): @@ -7675,9 +7674,9 @@ def __contains__(self, x): """ if isinstance(x, StandardTableau): return True - elif Tableaux.__contains__(self, x): + if Tableaux.__contains__(self, x): flatx = sorted(c for row in x for c in row) - return flatx == list(range(1, len(flatx)+1)) and (len(x) == 0 or + return all(i == fi for i, fi in enumerate(flatx, start=1)) and (len(x) == 0 or (all(row[i] < row[i+1] for row in x for i in range(len(row)-1)) and all(x[r][c] < x[r+1][c] for r in range(len(x)-1) for c in range(len(x[r+1]))) @@ -8183,25 +8182,20 @@ def random_element(self): t = [[None] * n for n in p] # Get the cells in the Young diagram - cells = [] - for i in range(len(p)): - for j in range(p[i]): - cells.append((i, j)) + cells = [(i, j) for i in range(len(p)) for j in range(p[i])] m = sum(p) - while m > 0: + while m: # Choose a cell at random cell = random.choice(cells) # Find a corner inner_corners = p.corners() while cell not in inner_corners: - hooks = [] - for k in range(cell[1] + 1, p[cell[0]]): - hooks.append((cell[0], k)) - for k in range(cell[0] + 1, len(p)): - if p[k] > cell[1]: - hooks.append((k, cell[1])) + c0, c1 = cell + hooks = [(c0, k) for k in range(c1 + 1, p[c0])] + hooks.extend((k, c1) + for k in range(c0 + 1, len(p)) if p[k] > c1) cell = random.choice(hooks) # Assign m to cell diff --git a/src/sage/combinat/words/finite_word.py b/src/sage/combinat/words/finite_word.py index 23e02ad61fb..ba9bf3f2157 100644 --- a/src/sage/combinat/words/finite_word.py +++ b/src/sage/combinat/words/finite_word.py @@ -511,10 +511,10 @@ def fcn(n): length = exp * self.length() if length in ZZ and length >= 0: return self._parent(fcn, length=length) - else: - raise ValueError("Power of the word is not defined on the exponent {}:" - " the length of the word ({}) times the exponent ({}) must" - " be a positive integer".format(exp, self.length(), exp)) + + raise ValueError("Power of the word is not defined on the exponent {}: " + "the length of the word ({}) times the exponent ({}) must " + "be a positive integer".format(exp, self.length(), exp)) def length(self): r""" @@ -4153,8 +4153,7 @@ def last_position_dict(self): {'1': 3, '2': 6, '3': 5} """ d = {} - for i, letter in enumerate(self): - d[letter] = i + d.update((letter, i) for i, letter in enumerate(self)) return d def _pos_in(self, other, p): @@ -4191,7 +4190,7 @@ def _pos_in(self, other, p): """ from sage.misc.superseded import deprecation deprecation(30187, 'f._pos_in(w, start) is deprecated.' - ' Use w.first_occurrence(f, start) instead.') + ' Use w.first_occurrence(f, start) instead.') return other.first_occurrence(self, p) def first_pos_in(self, other): @@ -4219,7 +4218,7 @@ def first_pos_in(self, other): """ from sage.misc.superseded import deprecation deprecation(30187, 'f.first_pos_in(w) is deprecated.' - ' Use w.first_occurrence(f) instead.') + ' Use w.first_occurrence(f) instead.') return other.first_occurrence(self) def find(self, sub, start=0, end=None): @@ -4440,7 +4439,7 @@ def factor_occurrences_in(self, other): """ from sage.misc.superseded import deprecation deprecation(30187, 'f.factor_occurrences_in(w) is deprecated.' - ' Use w.factor_occurrences_iterator(f) instead.') + ' Use w.factor_occurrences_iterator(f) instead.') return other.factor_occurrences_iterator(self) def nb_factor_occurrences_in(self, other): @@ -4475,7 +4474,7 @@ def nb_factor_occurrences_in(self, other): """ from sage.misc.superseded import deprecation deprecation(30187, 'f.nb_factor_occurrences_in(w) is deprecated.' - ' Use w.number_of_factor_occurrences(f) instead.') + ' Use w.number_of_factor_occurrences(f) instead.') return other.number_of_factor_occurrences(self) def nb_subword_occurrences_in(self, other): @@ -4544,7 +4543,7 @@ def nb_subword_occurrences_in(self, other): """ from sage.misc.superseded import deprecation deprecation(30187, 'f.nb_subword_occurrences_in(w) is deprecated.' - ' Use w.number_of_subword_occurrences(f) instead.') + ' Use w.number_of_subword_occurrences(f) instead.') return other.number_of_subword_occurrences(self) def number_of_factor_occurrences(self, other): @@ -5675,7 +5674,7 @@ def abelian_vectors(self, n): size = alphabet.cardinality() if size == float('inf'): raise TypeError("The alphabet of the parent is infinite; define" - " the word with a parent on a finite alphabet") + " the word with a parent on a finite alphabet") S = set() if n > self.length(): return S @@ -6105,8 +6104,8 @@ def abelian_vector(self): alphabet = self.parent().alphabet() if alphabet.cardinality() is Infinity: raise TypeError("The alphabet of the parent is infinite; define " - "the word with a parent on a finite alphabet or use " - "evaluation_dict() instead") + "the word with a parent on a finite alphabet " + "or use evaluation_dict() instead") ev_dict = self.evaluation_dict() return [ev_dict.get(a, 0) for a in alphabet] @@ -6803,8 +6802,8 @@ def colored_vector(self, x=0, y=0, width='default', height=1, cmap='hsv', thickn else: ordered_alphabet = self.parent().alphabet() dim = float(self.parent().alphabet().cardinality()) - letter_to_integer_dict = {a: i for i, a in - enumerate(ordered_alphabet)} + letter_to_integer_dict = {a: i + for i, a in enumerate(ordered_alphabet)} xp = x for a in self: i = letter_to_integer_dict[a] diff --git a/src/sage/combinat/words/morphism.py b/src/sage/combinat/words/morphism.py index 7ff3b53451c..343fe8af9eb 100644 --- a/src/sage/combinat/words/morphism.py +++ b/src/sage/combinat/words/morphism.py @@ -1048,8 +1048,7 @@ def extend_by(self, other): raise TypeError("other (=%s) is not a WordMorphism" % other) nv = dict(other._morph) - for k, v in self._morph.items(): - nv[k] = v + nv.update(self._morph) return WordMorphism(nv) def restrict_domain(self, alphabet): @@ -2467,9 +2466,9 @@ def dual_map(self, k=1): if k == 1: from sage.combinat.e_one_star import E1Star return E1Star(self) - else: - raise NotImplementedError("the dual map E_k^*" + - " is implemented only for k = 1 (not %s)" % k) + + raise NotImplementedError("the dual map E_k^* is implemented only " + "for k = 1 (not %s)" % k) @cached_method def rauzy_fractal_projection(self, eig=None, prec=53):