-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptical_flow_lucas.py
64 lines (50 loc) · 1.9 KB
/
optical_flow_lucas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#code source courtesy https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# params for ShiTomasi corner detection
corner_params = dict( maxCorners = 120,
#qualityLevel = 0.3,
qualityLevel = 0.07,
minDistance = 7,
blockSize = 7 )
# Parameters for lucas kanade optical flow
lucas_params = dict( winSize = (100,100),
#winSize = (20,20),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# grab first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **corner_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)
while True:
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lucas_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
# draw the tracks
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
a,b = int(a), int(b)
c,d= int(c),int(d)
print ('a,b',a,b)
mask = cv2.line(mask, (a,b),(c,d), (255,0,0), 10)
frame = cv2.circle(frame,(a,b),15,(0,255,0),-1)
img = cv2.add(frame,mask)
cv2.imshow('frame',img)
k = cv2.waitKey(30) & 0xff
if k == ord('q'):
break
# Now update the previous frame and previous points
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()