Minimalistic set of image reader agnostic tools to easily iterate over large images
Example 1
Let's iterate over a large image with overlapping tiles of the same size tiles in pixels. At boundaries we add "no-data" pixels. Let's assume the data access is provided with an example function
def read_data(x, y, width, height, out_width=None, out_height=None):
out_width = width if out_width is None else out_width
out_height = height if out_height is None else out_height
img.read(x, y, width, height, out_width, out_height)
Thus, overlapping tiles can be extracted as
from tiling import ConstStrideTiles
tiles = ConstStrideTiles(image_size=(500, 500), tile_size=(256, 256), stride=(100, 100),
origin=(-100, -100),
scale=1.0,
include_nodata=True)
print("Number of tiles: %i" % len(tiles))
for extent, out_size in tiles:
x, y, width, height = extent
data = read_data(x, y, width, height,
out_width=out_size[0],
out_height=out_size[1])
print("data.shape: {}".format(data.shape))
# Access a tile:
i = len(tiles) // 2
extent, out_size = tiles[i]
Example 2
Let's iterate over a large image with overlapping tiles of the same size in pixels.
In this case we prefer to not going outside the input image and fill tiles with nodata
.
In this situation, overlapping is not constant.
Let's assume the data access is provided with an example function
def read_data(x, y, width, height, out_width=None, out_height=None):
out_width = width if out_width is None else out_width
out_height = height if out_height is None else out_height
img.read(x, y, width, height, out_width, out_height)
Thus, overlapping tiles can be extracted as
from tiling import ConstSizeTiles
tiles = ConstSizeTiles(image_size=(500, 500), tile_size=(256, 256), min_overlapping=15, scale=1.0)
print("Number of tiles: %i" % len(tiles))
for extent, out_size in tiles:
assert out_size[0] == tiles.tile_size[0]
assert out_size[1] == tiles.tile_size[1]
x, y, width, height = extent
data = read_data(x, y, width, height,
out_width=out_size[0],
out_height=out_size[1])
print("data.shape: {}".format(data.shape))
# Access a tile:
i = len(tiles) // 2
extent = tiles[i]
pip install tiling
pip install git+https://github.com/vfdev-5/ImageTilingUtils.git
For more practical examples, see notebooks