-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathquaternion.go
312 lines (270 loc) · 9.88 KB
/
quaternion.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
package spatialmath
import (
"encoding/json"
"math"
"github.com/go-gl/mathgl/mgl64"
"github.com/golang/geo/r3"
"gonum.org/v1/gonum/num/quat"
"go.viam.com/rdk/utils"
)
// Quaternion is an orientation in quaternion representation.
type Quaternion quat.Number
// Quaternion returns orientation in quaternion representation.
func (q *Quaternion) Quaternion() quat.Number {
return quat.Number(*q)
}
// AxisAngles returns the orientation in axis angle representation.
func (q *Quaternion) AxisAngles() *R4AA {
return QuatToR4AA(q.Quaternion())
}
// OrientationVectorRadians returns orientation as an orientation vector (in radians).
func (q *Quaternion) OrientationVectorRadians() *OrientationVector {
return QuatToOV(q.Quaternion())
}
// OrientationVectorDegrees returns orientation as an orientation vector (in degrees).
func (q *Quaternion) OrientationVectorDegrees() *OrientationVectorDegrees {
return QuatToOVD(q.Quaternion())
}
// EulerAngles returns orientation in Euler angle representation.
func (q *Quaternion) EulerAngles() *EulerAngles {
return QuatToEulerAngles(q.Quaternion())
}
// RotationMatrix returns the orientation in rotation matrix representation.
func (q *Quaternion) RotationMatrix() *RotationMatrix {
return QuatToRotationMatrix(q.Quaternion())
}
// QuatToEulerAngles converts a quaternion to the euler angle representation. Algorithm from Wikipedia.
// https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_conversion
func QuatToEulerAngles(q quat.Number) *EulerAngles {
angles := EulerAngles{}
// yaw (z-axis rotation)
sinyCosp := 2.0 * (q.Real*q.Kmag + q.Imag*q.Jmag)
if math.Abs(sinyCosp) < 1e-12 { // && runtime.GOARCH == "arm64"
sinyCosp = 0
}
cosyCosp := 1.0 - 2.0*(q.Jmag*q.Jmag+q.Kmag*q.Kmag)
if math.Abs(cosyCosp) < 1e-12 {
cosyCosp = 0
}
angles.Yaw = math.Atan2(sinyCosp, cosyCosp)
// for a pitch that is π / 2, we experience gimbal lock
// and must calculate roll based on the real rotation and yaw
sinp := 2.0 * (q.Real*q.Jmag - q.Kmag*q.Imag)
if math.Abs(sinp) >= 1.0 {
// pitch (y-axis rotation)
angles.Pitch = math.Copysign(math.Pi/2., sinp) // use 90 degrees if out of range
// roll (x-axis rotation)
angles.Roll = 2.0*math.Atan2(q.Imag, q.Real) + math.Copysign(angles.Yaw, sinp)
} else {
// pitch (y-axis rotation)
angles.Pitch = math.Asin(sinp)
// roll (x-axis rotation)
sinrCosp := 2.0 * (q.Real*q.Imag + q.Jmag*q.Kmag)
cosrCosp := 1.0 - 2.0*(q.Imag*q.Imag+q.Jmag*q.Jmag)
angles.Roll = math.Atan2(sinrCosp, cosrCosp)
}
return &angles
}
// QuatToOVD converts a quaternion to an orientation vector in degrees.
func QuatToOVD(q quat.Number) *OrientationVectorDegrees {
ov := QuatToOV(q)
return ov.Degrees()
}
// QuatToOV converts a quaternion to an orientation vector.
func QuatToOV(q quat.Number) *OrientationVector {
xAxis := quat.Number{0, -1, 0, 0}
zAxis := quat.Number{0, 0, 0, 1}
ov := &OrientationVector{}
// Get the transform of our +X and +Z points
newX := quat.Mul(quat.Mul(q, xAxis), quat.Conj(q))
newZ := quat.Mul(quat.Mul(q, zAxis), quat.Conj(q))
ov.OX = newZ.Imag
ov.OY = newZ.Jmag
ov.OZ = newZ.Kmag
// The contents of ov.newX.Kmag are not in radians but we can use angleEpsilon anyway to check how close we are to
// the pole because it's a convenient small number
if 1-math.Abs(newZ.Kmag) > orientationVectorPoleRadius {
v1 := mgl64.Vec3{newZ.Imag, newZ.Jmag, newZ.Kmag}
v2 := mgl64.Vec3{newX.Imag, newX.Jmag, newX.Kmag}
// Get the vector normal to the local-x, local-z, origin plane
norm1 := v1.Cross(v2)
// Get the vector normal to the global-z, local-z, origin plane
norm2 := v1.Cross(mgl64.Vec3{zAxis.Imag, zAxis.Jmag, zAxis.Kmag})
// For theta, we find the angle between the planes defined by local-x, global-z, origin and local-x, local-z, origin
cosTheta := norm1.Dot(norm2) / (norm1.Len() * norm2.Len())
// Account for floating point error
if cosTheta > 1 {
cosTheta = 1
}
if cosTheta < -1 {
cosTheta = -1
}
theta := math.Acos(cosTheta)
if theta > orientationVectorPoleRadius {
// Acos will always produce a positive number, we need to determine directionality of the angle
// We rotate newZ by -theta around the newX axis and see if we wind up coplanar with local-x, global-z, origin
// If so theta is negative, otherwise positive
// An R4AA is a convenient way to rotate a point by an amount around an arbitrary axis
aa := R4AA{-theta, ov.OX, ov.OY, ov.OZ}
q2 := aa.ToQuat()
testZ := quat.Mul(quat.Mul(q2, zAxis), quat.Conj(q2))
norm3 := v1.Cross(mgl64.Vec3{testZ.Imag, testZ.Jmag, testZ.Kmag})
cosTest := norm1.Dot(norm3) / (norm1.Len() * norm3.Len())
if 1-cosTest < defaultAngleEpsilon*defaultAngleEpsilon {
ov.Theta = -theta
} else {
ov.Theta = theta
}
} else {
ov.Theta = 0
}
} else {
// Special case for when we point directly along the Z axis
// Get the vector normal to the local-x, global-z, origin plane
ov.Theta = -math.Atan2(newX.Jmag, -newX.Imag)
if newZ.Kmag < 0 {
ov.Theta = -math.Atan2(newX.Jmag, newX.Imag)
}
}
// the IEEE 754 Standard for Floating-Points allows both negative and positive zero representations.
// If one of the above conditions casts ov.Theta to -0, transform it to +0 for consistency.
// String comparisons of floating point numbers may fail otherwise.
if ov.Theta == -0. {
ov.Theta = 0.
}
return ov
}
// QuatToR4AA converts a quat to an R4 axis angle in the same way the C++ Eigen library does.
// https://eigen.tuxfamily.org/dox/AngleAxis_8h_source.html
func QuatToR4AA(q quat.Number) *R4AA {
denom := Norm(q)
angle := 2 * math.Atan2(denom, math.Abs(q.Real))
if q.Real < 0 {
angle *= -1
}
if denom < 1e-6 {
return &R4AA{Theta: angle, RX: 0, RY: 0, RZ: 1}
}
return &R4AA{angle, q.Imag / denom, q.Jmag / denom, q.Kmag / denom}
}
// QuatToR3AA converts a quat to an R3 axis angle in the same way the C++ Eigen library does.
// https://eigen.tuxfamily.org/dox/AngleAxis_8h_source.html
func QuatToR3AA(q quat.Number) r3.Vector {
denom := Norm(q)
angle := 2 * math.Atan2(denom, math.Abs(q.Real))
if q.Real < 0 {
angle *= -1
}
if denom < 1e-6 {
return r3.Vector{0, 0, 0}
}
return r3.Vector{angle * q.Imag / denom, angle * q.Jmag / denom, angle * q.Kmag / denom}
}
// QuatToRotationMatrix converts a quat to a Rotation Matrix
// reference: https://github.com/go-gl/mathgl/blob/592312d8590acb0686c14740dcf60e2f32d9c618/mgl64/quat.go#L168
func QuatToRotationMatrix(q quat.Number) *RotationMatrix {
w, x, y, z := q.Real, q.Imag, q.Jmag, q.Kmag
mat := [9]float64{
1 - 2*y*y - 2*z*z, 2*x*y + 2*w*z, 2*x*z - 2*w*y,
2*x*y - 2*w*z, 1 - 2*x*x - 2*z*z, 2*y*z + 2*w*x,
2*x*z + 2*w*y, 2*y*z - 2*w*x, 1 - 2*x*x - 2*y*y,
}
return &RotationMatrix{mat}
}
// Normalize a quaternion, returning its, versor (unit quaternion).
func Normalize(q quat.Number) quat.Number {
length := math.Sqrt(q.Real*q.Real + q.Imag*q.Imag + q.Jmag*q.Jmag + q.Kmag*q.Kmag)
if math.Abs(length-1.0) < 1e-10 {
return q
}
if length == 0 {
return NewZeroOrientation().Quaternion()
}
if length == math.Inf(1) {
length = float64(math.MaxFloat64)
}
return quat.Number{q.Real / length, q.Imag / length, q.Jmag / length, q.Kmag / length}
}
// Norm returns the norm of the quaternion, i.e. the sqrt of the sum of the squares of the imaginary parts.
func Norm(q quat.Number) float64 {
return math.Sqrt(q.Imag*q.Imag + q.Jmag*q.Jmag + q.Kmag*q.Kmag)
}
// Flip will multiply a quaternion by -1, returning a quaternion representing the same orientation but in the opposing octant.
func Flip(q quat.Number) quat.Number {
return quat.Number{-q.Real, -q.Imag, -q.Jmag, -q.Kmag}
}
// QuaternionAlmostEqual is an equality test for all the float components of a quaternion. Quaternions have double coverage, q == -q, and
// this function will *not* account for this. Use OrientationAlmostEqual unless you're certain this is what you want.
func QuaternionAlmostEqual(a, b quat.Number, tol float64) bool {
return utils.Float64AlmostEqual(a.Imag, b.Imag, tol) &&
utils.Float64AlmostEqual(a.Jmag, b.Jmag, tol) &&
utils.Float64AlmostEqual(a.Kmag, b.Kmag, tol) &&
utils.Float64AlmostEqual(a.Real, b.Real, tol)
}
// Used for interpolating orientations.
// Intro to lerp vs slerp: https://threadreaderapp.com/thread/1176137498323501058.html
func slerp(qN1, qN2 quat.Number, by float64) quat.Number {
q1 := mgl64.Quat{qN1.Real, mgl64.Vec3{qN1.Imag, qN1.Jmag, qN1.Kmag}}
q2 := mgl64.Quat{qN2.Real, mgl64.Vec3{qN2.Imag, qN2.Jmag, qN2.Kmag}}
// check we don't have a double cover issue
// interpolating to the opposite hemisphere will produce unexpected results
if oppositeHemisphere(qN1, qN2) {
q2 = q2.Scale(-1)
}
// Use mgl64's quats because they have nlerp and slerp built in
q1, q2 = q1.Normalize(), q2.Normalize()
var q mgl64.Quat
// Use nlerp for 0.5 since it's faster and equal to slerp
if by == 0.5 {
q = mgl64.QuatNlerp(q1, q2, by)
} else {
q = mgl64.QuatSlerp(q1, q2, by)
}
return quat.Number{q.W, q.X(), q.Y(), q.Z()}
}
// oppositeHemisphere returns true if all sings are opposite between two quats.
func oppositeHemisphere(q1, q2 quat.Number) bool {
if math.Signbit(q1.Real) == math.Signbit(q2.Real) {
return false
}
if math.Signbit(q1.Imag) == math.Signbit(q2.Imag) {
return false
}
if math.Signbit(q1.Jmag) == math.Signbit(q2.Jmag) {
return false
}
if math.Signbit(q1.Kmag) == math.Signbit(q2.Kmag) {
return false
}
return true
}
// MarshalJSON marshals to W, X, Y, Z json.
func (q Quaternion) MarshalJSON() ([]byte, error) {
return json.Marshal(quaternionJSONFromQuaternion(&q))
}
type quaternionJSON struct {
W, X, Y, Z float64
}
func (oj *quaternionJSON) toQuaternion() *Quaternion {
x := quat.Number{
Real: oj.W,
Imag: oj.X,
Jmag: oj.Y,
Kmag: oj.Z,
}
x = Normalize(x)
return &Quaternion{
Real: x.Real,
Imag: x.Imag,
Jmag: x.Jmag,
Kmag: x.Kmag,
}
}
func quaternionJSONFromQuaternion(q *Quaternion) quaternionJSON {
return quaternionJSON{
W: q.Real,
X: q.Imag,
Y: q.Jmag,
Z: q.Kmag,
}
}