diff --git a/src/utils/bin/sc_file_concatenator.py b/src/utils/bin/sc_file_concatenator.py index d6e260ed..48b500c0 100755 --- a/src/utils/bin/sc_file_concatenator.py +++ b/src/utils/bin/sc_file_concatenator.py @@ -78,6 +78,7 @@ ) adata.var.index = adata.var.index.astype(str) adata = adata[:, np.sort(adata.var.index)] + print(f"Total number of cells: {adata.obs.shape[0]}, genes: {adata.var.shape[0]}.") else: raise Exception("VSN ERROR: Concatenation of .{} files is not implemented.".format(args.format)) diff --git a/src/utils/bin/sc_h5ad_annotate_by_sample_metadata.py b/src/utils/bin/sc_h5ad_annotate_by_sample_metadata.py index a957a007..249822ff 100755 --- a/src/utils/bin/sc_h5ad_annotate_by_sample_metadata.py +++ b/src/utils/bin/sc_h5ad_annotate_by_sample_metadata.py @@ -4,6 +4,7 @@ import os import pandas as pd import scanpy as sc +from difflib import SequenceMatcher parser = argparse.ArgumentParser(description='') @@ -106,38 +107,48 @@ sep="\t" ) -sample_info = metadata[metadata[args.sample_column_name] == SAMPLE_NAME] - -if len(sample_info) == 0: - raise Exception(f"VSN ERROR: The metadata .tsv file does not contain sample ID '{SAMPLE_NAME}'.") -elif args.method == "sample" and len(sample_info) > 1: - raise Exception(f"VSN ERROR: The metadata .tsv file contains duplicate entries with the sample ID '{SAMPLE_NAME}'. Fix your metadata or use the 'sample+' method.") - -if args.method == "sample": - for (column_name, column_data) in sample_info.iteritems(): - adata.obs[column_name] = column_data.values[0] -elif args.method == "sample+": - if args.adata_comp_index_column_names is None or args.metadata_comp_index_column_names is None: - raise Exception("VSN ERROR: compIndexColumnNames param is missing in the sample_annotate config.") +def similar(a, b): + return SequenceMatcher(None, a, b).ratio() - new_obs = pd.merge( - adata.obs, - sample_info, - left_on=["sample_id"] + args.adata_comp_index_column_names, - right_on=[args.sample_column_name] + args.metadata_comp_index_column_names - ) - if new_obs.isnull().values.any(): - raise Exception("VSN ERROR: Merged adata.obs not complete, some NaN values detected.") +sample_info = metadata[metadata[args.sample_column_name] == SAMPLE_NAME] +sample_scores = [similar(index_entry, SAMPLE_NAME) for index_entry in metadata[args.sample_column_name]] - # Update the obs slot of the AnnData - adata.obs = new_obs +if all(sample_score < 0.5 for sample_score in sample_scores): + # Skip annotation for this sample + print(f"Skipping annotation for {SAMPLE_NAME}.") else: - raise Exception(f"VSN ERROR: Unrecognized method {args.method}.") - -if args.annotation_column_names is not None and len(args.annotation_column_names) > 0: - adata.obs = adata.obs[args.annotation_column_names] + if len(sample_info) == 0: + raise Exception(f"VSN ERROR: The metadata .tsv file does not contain sample ID '{SAMPLE_NAME}'.") + elif args.method == "sample" and len(sample_info) > 1: + raise Exception(f"VSN ERROR: The metadata .tsv file contains duplicate entries with the sample ID '{SAMPLE_NAME}'. Fix your metadata or use the 'sample+' method.") + + if args.method == "sample": + for (column_name, column_data) in sample_info.iteritems(): + adata.obs[column_name] = column_data.values[0] + elif args.method == "sample+": + + if args.adata_comp_index_column_names is None or args.metadata_comp_index_column_names is None: + raise Exception("VSN ERROR: compIndexColumnNames param is missing in the sample_annotate config.") + + new_obs = pd.merge( + adata.obs, + sample_info, + left_on=["sample_id"] + args.adata_comp_index_column_names, + right_on=[args.sample_column_name] + args.metadata_comp_index_column_names + ) + + if new_obs.isnull().values.any(): + raise Exception("VSN ERROR: Merged adata.obs not complete, some NaN values detected.") + + # Update the obs slot of the AnnData + adata.obs = new_obs + else: + raise Exception(f"VSN ERROR: Unrecognized method {args.method}.") + + if args.annotation_column_names is not None and len(args.annotation_column_names) > 0: + adata.obs = adata.obs[args.annotation_column_names] # I/O adata.write_h5ad("{}.h5ad".format(FILE_PATH_OUT_BASENAME))