-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
94 lines (76 loc) · 3.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import argparse
from shutil import rmtree
from utilities.picture_preparation import PicturePreparation
from neural_network import NeuralNetwork
from color_directory import PictureColorization
from training_preparation import extract_frame_set, extract_testing_frames
def generate_all_frames(input_movies_folder):
if os.path.exists('training_frames'):
rmtree('training_frames')
PicturePreparation().process_all_movies(input_movies_folder)
def extract_sets(stride):
if not os.path.isdir('training_frames'):
print('First generate training frames with -i option.')
return
extract_frame_set('training_frames', 'training_set', stride=stride)
extract_testing_frames('training_frames', 'training_set', 'testing_set')
def main():
parser = argparse.ArgumentParser(description='parser')
parser.add_argument('-i', help='folder with movie to teach on')
parser.add_argument('-o', help='folder with movies to color', default='testing_set')
parser.add_argument('-m', help='the model file')
parser.add_argument('-trs', help='folder with the training set', default='training_set')
parser.add_argument('-c', help='color only', action='store_true')
parser.add_argument('--patches', help='color only(32x32 patches)', action='store_true')
parser.add_argument('-t', help='train model', action='store_true')
parser.add_argument('-a', help='all automatic mode', action='store_true')
parser.add_argument('-et', help='extract training set', action='store_true')
parser.add_argument('-e', type=int, help='amount of epochs', default=1000)
parser.add_argument('-b', type=int, help='batch_size', default=5)
parser.add_argument('--patch-size', type=int, help='size of input images (for patches only) (powers of 2 only)', default=256)
parser.add_argument('-s', type=int, help='how many files to skip when creating training set', default=50)
args = parser.parse_args()
input_movies_folder = args.i
color_movies = args.o
model = args.m
epochs = args.e
batch_size = args.b
stride = args.s
extract_training_frames = args.et
training_folder = args.trs
if args.a:
generate_all_frames(input_movies_folder)
extract_sets(stride)
nn = NeuralNetwork(training_folder, epochs, batch_size)
nn.run()
colorizer = PictureColorization(nn.model, color_movies)
colorizer.save()
return
# to generate all possible frames
if args.i:
generate_all_frames(input_movies_folder)
return
# to extract training set
if extract_training_frames:
extract_sets(stride)
return
# train model on given training set
if os.path.isdir(training_folder) and args.t:
nn = NeuralNetwork(training_folder, epochs, batch_size,args.patch_size)
nn.run()
return
# to color directory with a model
if args.c and args.m:
nn = NeuralNetwork(training_folder, epochs, batch_size, model)
colorizer = PictureColorization(nn.model, color_movies)
colorizer.save()
return
# to color directory with a model (patches)
if args.patches and args.m:
nn = NeuralNetwork(training_folder, epochs, batch_size, model,args.patch_size)
colorizer = PictureColorization(nn.model, color_movies)
colorizer.save(args.patch_size)
return
if __name__ == "__main__":
main()