Skip to content

Latest commit

 

History

History
119 lines (102 loc) · 4.67 KB

README.md

File metadata and controls

119 lines (102 loc) · 4.67 KB

FALCON: FAst and Lightweight CONvolution

This package provides implementations of FALCON/FALCONBranch convolution with their corresponding CNN model.

Overview

Code structure

FALCON
  │ 
  ├── src
  │    │     
  │    ├── models
  │    │     ├── vgg.py: VGG model
  │    │     ├── resnet.py: ResNet model
  │    │     ├── model_imagenet.py: Pretrained model (from pytorch) 
  │    │     ├── falcon.py: FALCON
  │    │     └── stconv_branch.py: StConvBranch & FALCONBranch
  │    │      
  │    ├── train_test
  │    │     ├── imagenet.py: train/validate on ImageNet 
  │    │     ├── main.py: train/test on CIFAR10/CIFAR100/SVHN 
  │    │     ├── train.py: training process
  │    │     ├── test.py: testing process
  │    │     └── validation.py: validation process
  │    │     
  │    └── utils
  │          ├── compression_cal.py: calculate the number of parameters and FLOPs
  │          ├── default_param.py: default cfgs 
  │          ├── load_data.py: load datasets
  │          ├── lr_decay.py: control learning rate
  │          ├── optimizer_option.py: choose optimizer 
  │          ├── save_restore.py: save and restore trained model
  │          └── timer.py: timer for inference time
  │
  └── script: shell scripts for execution of training/testing codes

Naming convention

StandardConv: Standard Convolution (baseline)

FALCON: FAst and Lightweight CONvolution - the new convolution architecture we proposed

Rank: Rank of convolution. Copy the conv layer for k times, run independently and add output together at the end of the layer. This hyperparameter helps balace compression rate/ accelerate rate and accuracy.

FALCONBranch: New version of FALCON - for fitting FALCON into ShuffleUnitV2 architecture.

Data description

Output

  • For CIFAR datasets, the trained model will be saved in train_test/trained_model/ after training.
  • For ImageNet, the checkpoint will be saved in train_test/checkpoint
  • You can test the model only if there is a trained model in train_test/trained_model/.

Install

Environment

  • Unbuntu
  • CUDA 9.0
  • Python 3.6
  • torch
  • torchvision

Dependence Install

pip install torch torchvision

How to use

Clone the repository

git clone https://
cd FALCON

Training & Testing

  • To train the model on CIFAR-10/CIFAR-100/SVHN datasets, run script:
    cd src/train_test
    python main.py -train -conv StandardConv -m VGG19 -data cifar10
    python main.py -train -conv FALCON -m VGG19 -data cifar10 -init
    
    The trained model will be saved in src/train_test/trained_model/
  • To test the model, run script:
    cd src/train_test
    python main.py -conv StandardConv -m VGG19 -data cifar10
    python main.py -conv FALCON -m VGG19 -data cifar10 -init
    
    The testing accuracy, inference time, number of parameters and number of FLOPs will be printed on the screen.
  • Pre-trained model is saved in src/train_test/trained_model/
    • For example:
      • Standard model: conv=StandardConv,model=VGG19,data=cifar100,rank=1,alpha=1.pkl
      • FALCON model: conv=FALCON,model=VGG19,data=cifar100,rank=1,alpha=1,init.pkl

DEMO

  • There are two demo scripts: script/train.sh and script/inference.sh.
  • You can change arguments in .sh files to train/test different model.
    • train.sh: Execute training process of the model
      • Accuracy/ loss/ training time for 100 iteration will be printed on the screen during training.
      • Accuracy/ inference time/ number of parameters/ number of FLOPs will be printed on the screen after training.
    • inference.sh: Execute inference process of the model
      • Accuracy/ inference time/ number of parameters/ number of FLOPs will be printed on the screen.
      • You can run this file only when the trained model exist.
      • Sample trained model is provided in src/train_test/trained_model/.

Contact us

License

Licensed under the Apache License, Version 2.0