forked from hobincar/vtt-action-recognition
-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.py
149 lines (106 loc) · 4.93 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from collections import defaultdict
import json
import os
import time
import numpy as np
def weight_classes(list_fpath, n_actions):
if not os.path.exists(list_fpath): return None
with open(list_fpath, 'r') as fin:
data = fin.readlines()
label_counter = defaultdict(lambda: 0)
for d in data:
_, _, _, labels, _ = d.split('\t')
labels = [ int(l) for l in labels.split(",") ]
for label in labels:
label_counter[label] += 1
weights = [ 1 for _ in range(n_actions) ]
for class_idx, n_data in label_counter.items():
if n_data == 0: n_data = 1 # TODO: Remove actions which belong to too few clips
weights[class_idx] /= n_data
weights = np.asarray(weights)
weights = weights / np.sum(weights)
return weights
class CommonConfig:
data_root_dpath = "data/friends"
frame_root_dpath = os.path.join(data_root_dpath, "frames")
model_root_dpath = "models"
output_root_dpath = "outputs"
frame_dpath_tpl = os.path.join(frame_root_dpath, "S{:02d}_EP{:02d}")
list_dpath = os.path.join(data_root_dpath, "lists")
annotation_dpath = os.path.join(data_root_dpath, "annotations")
frame_fpath_tpl = os.path.join(frame_dpath_tpl, "{:05d}.jpg")
annotation_fpath_tpl = os.path.join(annotation_dpath, "S{:02d}_EP{:02d}.json")
list_fpath_tpl = os.path.join(list_dpath, "friends_S{:02d}_EP{:02d}.list")
train_list_fpath = os.path.join(list_dpath, "friends_train.list")
test_list_fpath = os.path.join(list_dpath, "friends_test.list")
with open(os.path.join(data_root_dpath, "act2idx.json"), 'r') as fin:
act2idx = json.load(fin)
with open(os.path.join(data_root_dpath, "idx2rep.json"), 'r') as fin:
idx2rep = json.load(fin)
with open(os.path.join(data_root_dpath, "rep2idx.json"), 'r') as fin:
rep2idx = json.load(fin)
with open(os.path.join(data_root_dpath, "rep2sta.json"), 'r') as fin:
rep2sta = json.load(fin)
n_actions = len(idx2rep)
actions = list(idx2rep.values())
action_labels = list(idx2rep.keys())
fps_used_to_extract_frames = 5
n_frames_per_clip = 16
model_tag = "C3D"
full_shape = { "width": 1280, "height": 720 } # [ width, height ]
resize_shape = { "width": 171, "height": 128 } # [ height, width ]
n_channels = 3
high_prob_threshold = 0.5
class ListConfig(CommonConfig):
seasons = [ 1 ]
episodes_list = [ range(1, 24) ]
train_ratio = 0.7
bbox_tag = "full_rect" # [ "face_rect", "full_rect" ]
bbox_labels = [ "min_x", "min_y", "max_x", "max_y" ]
n_front = CommonConfig.n_frames_per_clip // 2 - 1
n_back = CommonConfig.n_frames_per_clip - n_front - 1
class DataLoaderConfig(CommonConfig):
use_bbox = False
bbox_mode = "fit" # [ "fit", "center_pad" ]
crop_size = 112
batch_size = 30
class TrainConfig(DataLoaderConfig):
n_workers = 4
use_pretrained_model = False
if use_pretrained_model:
pretrained_model_dpath = "pretrained_models"
pretrained_model_name = "sports1m_finetuning_ucf101"
pretrained_model_fpath = os.path.join(pretrained_model_dpath, "{}.model".format(pretrained_model_name))
n_iterations = 40000
train_log_every = 100
test_log_every = 1000
n_log_every = 5
log_topk = 5
save_every = 10000
moving_average_decay = 0.9999
lr_stable = 1e-5
lr_finetune = 1e-5
class_weights = weight_classes(DataLoaderConfig.train_list_fpath, DataLoaderConfig.n_actions)
timestamp = time.strftime("%y%m%d-%H:%M:%S", time.gmtime())
id = "{} | bbox-{} | lr-st-{}-fn-{} | pt-{} | {}".format(
DataLoaderConfig.model_tag, 'ON' if DataLoaderConfig.use_bbox else 'OFF', lr_stable, lr_finetune,
pretrained_model_name if use_pretrained_model else "None", timestamp)
log_root_dpath = "logs"
log_dpath = os.path.join(log_root_dpath, id)
model_fpath = os.path.join(DataLoaderConfig.model_root_dpath, id, "model")
class PredConfig(DataLoaderConfig):
prediction_root_dpath = os.path.join(DataLoaderConfig.output_root_dpath, "predictions")
integration_dpath = os.path.join(DataLoaderConfig.output_root_dpath, "integration", "data", "friends")
integration_fpath_tpl = os.path.join(integration_dpath, "friends_s{:02d}_e{:02d}.jsonl")
seasons = [ 1 ]
episodes_list = [ range(1, 24) ]
model_name = "C3D | bbox-OFF | lr-st-1e-05-fn-1e-05 | pt-None | 181208-11:08:24"
n_iterations = 40000
model_fpath = os.path.join(DataLoaderConfig.model_root_dpath, model_name, "model-{}".format(n_iterations))
prediction_fpath_tpl = os.path.join(prediction_root_dpath, model_name, str(n_iterations),
"S{:02d}_EP{:02d}.json")
topk = 5
class DemoConfig(PredConfig):
demo_root_dpath = os.path.join(PredConfig.output_root_dpath, "demos")
demo_fpath_tpl = os.path.join(demo_root_dpath, PredConfig.model_name, str(PredConfig.n_iterations),
"S{:02d}_EP{:02d}.mp4")