-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathobrem.py
97 lines (79 loc) · 3.54 KB
/
obrem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#best object removal model
import gradio as gr
import numpy as np
import torch
from src.pipeline_stable_diffusion_controlnet_inpaint import *
from diffusers import StableDiffusionInpaintPipeline, ControlNetModel, DEISMultistepScheduler
from diffusers.utils import load_image
from PIL import Image
import cv2
controlnet = ControlNetModel.from_pretrained("thepowefuldeez/sd21-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
# speed up diffusion process with faster scheduler and memory optimization
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
pipe.to('cuda')
def resize_image(image, target_size):
width, height = image.size
aspect_ratio = float(width) / float(height)
if width > height:
new_width = target_size
new_height = int(target_size / aspect_ratio)
else:
new_width = int(target_size * aspect_ratio)
new_height = target_size
return image.resize((new_width, new_height), Image.BICUBIC)
def predict(input_dict):
# Get the drawn input image and mask
image = input_dict["image"].convert("RGB")
input_image = input_dict["mask"].convert("RGB")
input_image = resize_image(input_image, 768)
image = resize_image(image, 768)
# Convert images to numpy arrays
image_np = np.array(image)
input_image_np = np.array(input_image)
# Convert input_image_np to grayscale and normalize to [0, 1] range
mask_np = cv2.cvtColor(input_image_np, cv2.COLOR_RGB2GRAY) / 255.0
# Apply OpenCV inpainting
inpainted_image_np = cv2.inpaint(image_np, (mask_np * 255).astype(np.uint8), 3, cv2.INPAINT_TELEA)
# Blend the original image and the inpainted image using the mask
blended_image_np = image_np * (1 - mask_np)[:, :, None] + inpainted_image_np * mask_np[:, :, None]
# Convert the blended image back to a PIL Image
blended_image = Image.fromarray(np.uint8(blended_image_np))
# Process the blended image
blended_image_np = np.array(blended_image)
low_threshold = 800
high_threshold = 900
canny = cv2.Canny(blended_image_np, low_threshold, high_threshold)
canny = canny[:, :, None]
canny = np.concatenate([canny, canny, canny], axis=2)
canny_image = Image.fromarray(canny)
canny_image.save("canny.png")
generator = torch.manual_seed(0)
output = pipe(
prompt="",
num_inference_steps=20,
generator=generator,
image=blended_image_np,
control_image=canny_image,
controlnet_conditioning_scale=0.9,
mask_image=input_image
).images[0]
return output
image_blocks = gr.Blocks()
with image_blocks as demo:
with gr.Row():
with gr.Column():
# Allow user to draw on the input image
input_image = gr.Image(source='upload', tool='sketch', elem_id="input_image_upload", type="pil", label="Upload & Draw on Image")
# Allow user to draw the mask
#mask = gr.Image(source='upload', tool='sketch', elem_id="mask_upload", type="pil", label="Draw Mask")
#prompt = gr.Textbox(label='Your prompt (what you want to add in place of what you are removing)')
btn = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
btn.click(fn=predict, inputs=[input_image], outputs=result)
demo.launch(share=True)