-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPi^.agda
185 lines (151 loc) · 7.48 KB
/
Pi^.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{-# OPTIONS --without-K --rewriting #-}
module Pi.Syntax.Pi^ where
open import lib.Base
open import lib.NType
open import lib.NType2
open import lib.types.Sigma
open import lib.PathOver
open import lib.PathGroupoid
open import lib.Equivalence
import lib.types.Nat as N
open import Pi.Common.Extra
open import Pi.Common.Misc
private
variable
m n o p q r : ℕ
-- Types
private
variable
t t₁ t₂ t₃ t₄ t₅ t₆ : ℕ
infix 30 _⟷₁^_
infixr 50 _◎^_ ⊕^_
infixr 50 _■^_ _□^_
ℕ-p : {n : ℕ} -> (p : n == n) -> p == idp
ℕ-p p = (prop-has-all-paths {{has-level-apply N.ℕ-level _ _}} p idp)
-- 1-combinators
data _⟷₁^_ : ℕ → ℕ → Type₀ where
swap₊^ : (S (S n)) ⟷₁^ (S (S n))
id⟷₁^ : n ⟷₁^ n
_◎^_ : (n ⟷₁^ m) → (m ⟷₁^ o) → (n ⟷₁^ o)
⊕^_ : (n ⟷₁^ m) → ((S n) ⟷₁^ (S m))
!⟷₁^ : t₁ ⟷₁^ t₂ → t₂ ⟷₁^ t₁
!⟷₁^ swap₊^ = swap₊^
!⟷₁^ id⟷₁^ = id⟷₁^
!⟷₁^ (c₁ ◎^ c₂) = !⟷₁^ c₂ ◎^ !⟷₁^ c₁
!⟷₁^ (⊕^ c₁) = ⊕^ (!⟷₁^ c₁)
⟷₁^-eq-size : (n ⟷₁^ m) -> n == m
⟷₁^-eq-size swap₊^ = idp
⟷₁^-eq-size id⟷₁^ = idp
⟷₁^-eq-size (c₁ ◎^ c₂) = ⟷₁^-eq-size c₁ ∙ ⟷₁^-eq-size c₂
⟷₁^-eq-size (⊕^ c) = ap S (⟷₁^-eq-size c)
postulate
⟷₁^-eq-size-rewrite : {c : t ⟷₁^ t} → (⟷₁^-eq-size c) ↦ idp -- because proof of == in ℕ
{-# REWRITE ⟷₁^-eq-size-rewrite #-}
data _⟷₂^_ : n ⟷₁^ m → n ⟷₁^ m → Set where
assoc◎l^ : {c₁ : t₁ ⟷₁^ t₂} {c₂ : t₂ ⟷₁^ t₃} {c₃ : t₃ ⟷₁^ t₄} →
(c₁ ◎^ (c₂ ◎^ c₃)) ⟷₂^ ((c₁ ◎^ c₂) ◎^ c₃)
assoc◎r^ : {c₁ : t₁ ⟷₁^ t₂} {c₂ : t₂ ⟷₁^ t₃} {c₃ : t₃ ⟷₁^ t₄} →
((c₁ ◎^ c₂) ◎^ c₃) ⟷₂^ (c₁ ◎^ (c₂ ◎^ c₃))
idl◎l^ : {c : t₁ ⟷₁^ t₂} → (id⟷₁^ ◎^ c) ⟷₂^ c
idl◎r^ : {c : t₁ ⟷₁^ t₂} → c ⟷₂^ id⟷₁^ ◎^ c
idr◎l^ : {c : t₁ ⟷₁^ t₂} → (c ◎^ id⟷₁^) ⟷₂^ c
idr◎r^ : {c : t₁ ⟷₁^ t₂} → c ⟷₂^ (c ◎^ id⟷₁^)
linv◎l^ : {c : t₁ ⟷₁^ t₂} → (c ◎^ !⟷₁^ c) ⟷₂^ id⟷₁^
linv◎r^ : {c : t₁ ⟷₁^ t₂} → id⟷₁^ ⟷₂^ (c ◎^ !⟷₁^ c)
rinv◎l^ : {c : t₁ ⟷₁^ t₂} → (!⟷₁^ c ◎^ c) ⟷₂^ id⟷₁^
rinv◎r^ : {c : t₁ ⟷₁^ t₂} → id⟷₁^ ⟷₂^ (!⟷₁^ c ◎^ c)
id⟷₂^ : {c : t₁ ⟷₁^ t₂} → c ⟷₂^ c
_■^_ : {c₁ c₂ c₃ : t₁ ⟷₁^ t₂} →
(c₁ ⟷₂^ c₂) → (c₂ ⟷₂^ c₃) → (c₁ ⟷₂^ c₃)
_⊡^_ : {c₁ : t₁ ⟷₁^ t₂} {c₂ : t₂ ⟷₁^ t₃} {c₃ : t₁ ⟷₁^ t₂} {c₄ : t₂ ⟷₁^ t₃} →
(c₁ ⟷₂^ c₃) → (c₂ ⟷₂^ c₄) → (c₁ ◎^ c₂) ⟷₂^ (c₃ ◎^ c₄)
-- New ones
⊕id⟷₁⟷₂^ : ⊕^ id⟷₁^ {n = n} ⟷₂^ id⟷₁^ {n = (S n)}
!⊕id⟷₁⟷₂^ : id⟷₁^ {n = (S n)} ⟷₂^ ⊕^ id⟷₁^ {n = n}
hom◎⊕⟷₂^ : {c₁ : (n) ⟷₁^ (m)} {c₂ : (m) ⟷₁^ (o)} →
((⊕^ c₁) ◎^ (⊕^ c₂)) ⟷₂^ ⊕^ (c₁ ◎^ c₂)
resp⊕⟷₂ :
{c₁ : (n) ⟷₁^ (m)} {c₂ : (n) ⟷₁^ (m)} → (c₁ ⟷₂^ c₂) → (⊕^ c₁) ⟷₂^ (⊕^ c₂)
hom⊕◎⟷₂^ : {c₁ : (n) ⟷₁^ (m)} {c₂ : (m) ⟷₁^ (o)} →
⊕^ (c₁ ◎^ c₂) ⟷₂^ ((⊕^ c₁) ◎^ (⊕^ c₂))
swapr₊⟷₂^ : {c : (n) ⟷₁^ (m)}
→ (⊕^ (⊕^ c)) ◎^ swap₊^ ⟷₂^ swap₊^ ◎^ (⊕^ (⊕^ c))
swapl₊⟷₂^ : {c : (n) ⟷₁^ (m)}
→ swap₊^ ◎^ (⊕^ (⊕^ c)) ⟷₂^ (⊕^ (⊕^ c)) ◎^ swap₊^
hexagonl₊l : (swap₊^ {S n}) ◎^ ((⊕^ (swap₊^ {n})) ◎^ swap₊^)
⟷₂^ (⊕^ swap₊^) ◎^ (swap₊^ ◎^ ⊕^ swap₊^)
hexagonl₊r : (⊕^ swap₊^) ◎^ (swap₊^ ◎^ ⊕^ swap₊^)
⟷₂^ (swap₊^ {S n}) ◎^ ((⊕^ (swap₊^ {n})) ◎^ swap₊^)
!!⟷₁^ : (c : n ⟷₁^ m) → !⟷₁^ (!⟷₁^ c) ⟷₂^ c
!!⟷₁^ swap₊^ = id⟷₂^
!!⟷₁^ id⟷₁^ = id⟷₂^
!!⟷₁^ (c ◎^ c₁) = !!⟷₁^ c ⊡^ !!⟷₁^ c₁
!!⟷₁^ (⊕^ c) = resp⊕⟷₂ (!!⟷₁^ c)
-- -- -- Equational reasoning
infixr 10 _⟷₂^⟨_⟩_
infix 15 _⟷₂^∎
_⟷₂^⟨_⟩_ : ∀ (c₁ : t₁ ⟷₁^ t₂) {c₂ c₃ : t₁ ⟷₁^ t₂} →
(c₁ ⟷₂^ c₂) → (c₂ ⟷₂^ c₃) → (c₁ ⟷₂^ c₃)
_ ⟷₂^⟨ β ⟩ γ = _■^_ β γ
_⟷₂^∎ : ∀ (c : t₁ ⟷₁^ t₂) → c ⟷₂^ c
_ ⟷₂^∎ = id⟷₂^
!⟷₂^ : {c₁ c₂ : t₁ ⟷₁^ t₂} → (α : c₁ ⟷₂^ c₂) → (c₂ ⟷₂^ c₁)
!⟷₂^ assoc◎l^ = assoc◎r^
!⟷₂^ assoc◎r^ = assoc◎l^
!⟷₂^ idl◎l^ = idl◎r^
!⟷₂^ idl◎r^ = idl◎l^
!⟷₂^ idr◎l^ = idr◎r^
!⟷₂^ idr◎r^ = idr◎l^
!⟷₂^ linv◎l^ = linv◎r^
!⟷₂^ linv◎r^ = linv◎l^
!⟷₂^ rinv◎l^ = rinv◎r^
!⟷₂^ rinv◎r^ = rinv◎l^
!⟷₂^ id⟷₂^ = id⟷₂^
!⟷₂^ (_■^_ α α₁) = _■^_ (!⟷₂^ α₁) (!⟷₂^ α)
!⟷₂^ (α ⊡^ α₁) = !⟷₂^ α ⊡^ !⟷₂^ α₁
!⟷₂^ ⊕id⟷₁⟷₂^ = !⊕id⟷₁⟷₂^
!⟷₂^ !⊕id⟷₁⟷₂^ = ⊕id⟷₁⟷₂^
!⟷₂^ hom◎⊕⟷₂^ = hom⊕◎⟷₂^
!⟷₂^ (resp⊕⟷₂ α) = resp⊕⟷₂ (!⟷₂^ α)
!⟷₂^ hom⊕◎⟷₂^ = hom◎⊕⟷₂^
!⟷₂^ swapl₊⟷₂^ = swapr₊⟷₂^
!⟷₂^ swapr₊⟷₂^ = swapl₊⟷₂^
!⟷₂^ hexagonl₊l = hexagonl₊r
!⟷₂^ hexagonl₊r = hexagonl₊l
resp!⟷₂ : {c₁ c₂ : n ⟷₁^ m} → (c₁ ⟷₂^ c₂) → !⟷₁^ c₁ ⟷₂^ !⟷₁^ c₂
resp!⟷₂ assoc◎l^ = assoc◎r^
resp!⟷₂ assoc◎r^ = assoc◎l^
resp!⟷₂ idl◎l^ = idr◎l^
resp!⟷₂ idl◎r^ = idr◎r^
resp!⟷₂ idr◎l^ = idl◎l^
resp!⟷₂ idr◎r^ = idl◎r^
resp!⟷₂ linv◎l^ = rinv◎l^
resp!⟷₂ linv◎r^ = rinv◎r^
resp!⟷₂ rinv◎l^ = linv◎l^
resp!⟷₂ rinv◎r^ = linv◎r^
resp!⟷₂ id⟷₂^ = id⟷₂^
resp!⟷₂ (α₁ ■^ α₂) = resp!⟷₂ α₁ ■^ resp!⟷₂ α₂
resp!⟷₂ (α₁ ⊡^ α₂) = resp!⟷₂ α₂ ⊡^ resp!⟷₂ α₁
resp!⟷₂ ⊕id⟷₁⟷₂^ = ⊕id⟷₁⟷₂^
resp!⟷₂ !⊕id⟷₁⟷₂^ = !⊕id⟷₁⟷₂^
resp!⟷₂ hom◎⊕⟷₂^ = hom◎⊕⟷₂^
resp!⟷₂ (resp⊕⟷₂ α) = resp⊕⟷₂ (resp!⟷₂ α)
resp!⟷₂ hom⊕◎⟷₂^ = hom⊕◎⟷₂^
resp!⟷₂ swapr₊⟷₂^ = swapl₊⟷₂^
resp!⟷₂ swapl₊⟷₂^ = swapr₊⟷₂^
resp!⟷₂ hexagonl₊l = assoc◎r^ ■^ hexagonl₊l ■^ assoc◎l^
resp!⟷₂ hexagonl₊r = assoc◎r^ ■^ hexagonl₊r ■^ assoc◎l^
c₊⟷₂id⟷₁^ : (c : (O) ⟷₁^ (O)) → c ⟷₂^ id⟷₁^
c₊⟷₂id⟷₁^ id⟷₁^ = id⟷₂^
c₊⟷₂id⟷₁^ (_◎^_ {m = (O)} c₁ c₂) = _■^_ (c₊⟷₂id⟷₁^ c₁ ⊡^ c₊⟷₂id⟷₁^ c₂) idl◎l^
c₊⟷₂id⟷₁^ (_◎^_ {m = ((S m))} c₁ c₂) with (⟷₁^-eq-size c₂)
... | ()
⊕⊕id⟷₁⟷₂^ : {n : ℕ} → (⊕^ ⊕^ id⟷₁^ {n = n}) ⟷₂^ id⟷₁^ {n = S (S n)}
⊕⊕id⟷₁⟷₂^ = _■^_ (resp⊕⟷₂ ⊕id⟷₁⟷₂^) ⊕id⟷₁⟷₂^
-- Pasting equations
_□^_ : {c₁ c₂ c₃ : t₁ ⟷₁^ t₂}
→ (c₁ ⟷₂^ c₃) → (c₂ ⟷₂^ c₃) → (c₁ ⟷₂^ c₂)
α₁ □^ α₂ = α₁ ■^ !⟷₂^ α₂
-- -- -- 3-combinators trivial
data _⟷₃^_ :{p q : n ⟷₁^ m} → (p ⟷₂^ q) → (p ⟷₂^ q) → Set where
trunc : {p q : n ⟷₁^ m} (α β : p ⟷₂^ q) → α ⟷₃^ β