-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBrand_Rec.py
68 lines (47 loc) · 2.4 KB
/
Brand_Rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# coding: utf-8
# In[25]:
import pandas as pd
import numpy as np
userBrandData = pd.read_csv('C:/Users/Vinod Varma/Desktop/Python/brands_filtered_short.txt', sep='\t')
#userBrandData.head()
#Get list of unique Brands
itemList=list(set(userBrandData["brand_id"].tolist()))
#Get count of users
userCount=len(set(userBrandData["brand_id"].tolist()))
#Create an empty data frame to store Brand affinity scores for Brands.
BrandAffinity= pd.DataFrame(columns=('Brand1', 'Brand2', 'score'))
rowCount=0
BrandAffinity.head()
#For each item in the list, compare with other items.
for ind1 in range(len(itemList)):
#Get list of users who bought this Brand 1.
Brand1Users = userBrandData[userBrandData.brand_id==itemList[ind1]]["shopping_profile_id"].tolist()
#print("Brand 1 ", Brand1Users)
#Get Brand 2 - Brands that are not item 1 or those that are not analyzed already.
for ind2 in range(ind1, len(itemList)):
if ( ind1 == ind2):
continue
#Get list of users who bought Brand 2
Brand2Users=userBrandData[userBrandData.brand_id==itemList[ind2]]["shopping_profile_id"].tolist()
#print("Brand 2",Brand2Users)
#Find score. Find the common list of shopping_profile_id's and divide it by the total users.
commonUsers= len(set(Brand1Users).intersection(set(Brand2Users)))
score=commonUsers / userCount
#Add a score for Brand 1, Brand 2
BrandAffinity.loc[rowCount] = [itemList[ind1],itemList[ind2],score]
rowCount +=1
#Add a score for Brand2, Brand 1. The same score would apply irrespective of the sequence.
BrandAffinity.loc[rowCount] = [itemList[ind2],itemList[ind1],score]
rowCount +=1
searchItem= 552
recoList=pd.DataFrame(BrandAffinity[BrandAffinity.Brand1==searchItem] [["Brand2","score"]] .sort_values("score", ascending=[0]))
#Transaformation of fields accordingly
recoList['Brand2'] = recoList['Brand2'].dropna().apply(np.int64)
recoList = recoList.iloc[0:10]
recoList = recoList[['Brand2','score']]
userBrandData1 = userBrandData[['brand_id','name']]
recoList.reset_index(inplace=True)
Final = pd.merge(recoList, userBrandData1, how='left', left_on='Brand2', right_on='brand_id')
Final1 = Final[['Brand2','score','name']]
Final_Affinity = Final1.drop_duplicates(['Brand2'])
print("Recommendations for item Steve Madden\n", Final_Affinity)