-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlstm_model.py
executable file
·413 lines (353 loc) · 21.2 KB
/
lstm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from seqtools import *
import configargparse
import pandas as pd
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pandas as pd
torch.manual_seed(1)
from torch.autograd import Variable
import numpy as np
import sys
# Minimum count
MIN_COUNT = 1
# Min length of input and output sequence
MIN_LENGTH = 1
# Max length of input and output sequence
MAX_LENGTH = 30
class LSTMTagger(nn.Module):
def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, batch_size=1, dropout=0.0, n_layers=1):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim
self.n_layers=n_layers
global use_pretrained, pre_trained_embeddings
if use_pretrained:
self.word_embeddings = nn.Embedding(pre_trained_embeddings.size(0), pre_trained_embeddings.size(1))
self.word_embeddings.weight = nn.Parameter(pre_trained_embeddings)
self.word_embeddings.weight.requires_grad = False
print "Using pretrained embeddings"
else:
self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)
# The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim, dropout=dropout, num_layers=n_layers)
# The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden(batch_size)
self.tagset_size = tagset_size
def init_hidden(self, batch_size):
# Before we've done anything, we dont have any hidden state.
# Refer to the Pytorch documentation to see exactly
# why they have this dimensionality.
# The axes semantics are (num_layers, minibatch_size, hidden_dim)
self.batch_size=batch_size
if USE_CUDA:
return (autograd.Variable(torch.zeros(self.n_layers, batch_size, self.hidden_dim).cuda()),
autograd.Variable(torch.zeros(self.n_layers, batch_size, self.hidden_dim)).cuda())
else:
return (autograd.Variable(torch.zeros(self.n_layers, batch_size, self.hidden_dim)),
autograd.Variable(torch.zeros(self.n_layers, batch_size, self.hidden_dim)))
def forward(self, sentences):
embeds = self.word_embeddings(sentences)
ems=embeds.view(embeds.size()[0], embeds.size()[1], embeds.size()[2])
lstm_outputs, self.hidden = self.lstm(ems, self.hidden)
lstm_output_reshaped = lstm_outputs.transpose(0,1).contiguous() # Transpose to have batch first
tag_space= self.hidden2tag(lstm_output_reshaped.view(-1, lstm_outputs.size()[2])) # concatenate all batches
return tag_space.view(self.batch_size, -1, self.tagset_size)
#logits = F.softmax(tag_space).view(self.batch_size, -1, self.tagset_size)
#return logits
def filter_pairs(pairs):
filtered_pairs = []
for pair in pairs:
if len(pair[0]) >= MIN_LENGTH and len(pair[0]) <= MAX_LENGTH and len(pair[1]) >= MIN_LENGTH and len(pair[1]) <= MAX_LENGTH:
filtered_pairs.append(pair)
return filtered_pairs
def get_validation_batch(pairs, input_lang, output_lang):
input_seqs = []
target_seqs = []
# Choose random pairs
for pair in pairs:
input_seqs.append(indexes_from_sentence(input_lang, pair[0]))
target_seqs.append(indexes_from_sentence(output_lang, pair[1]))
# Zip into pairs, sort by length (descending), unzip
seq_pairs = sorted(zip(input_seqs, target_seqs), key=lambda p: len(p[0]), reverse=True)
input_seqs, target_seqs = zip(*seq_pairs)
# For input and target sequences, get array of lengths and pad with 0s to max length
input_lengths = [len(s) for s in input_seqs]
input_padded = [pad_seq(s, MAX_LENGTH) for s in input_seqs]
target_lengths = [len(s) for s in target_seqs]
target_padded = [pad_seq(s, MAX_LENGTH) for s in target_seqs]
# Turn padded arrays into (batch_size x max_len) tensors, transpose into (max_len x batch_size)
input_var = Variable(torch.LongTensor(input_padded)).transpose(0, 1)
target_var = Variable(torch.LongTensor(target_padded)).transpose(0, 1)
if USE_CUDA:
input_var = input_var.cuda()
target_var = target_var.cuda()
return input_var, input_lengths, target_var, target_lengths
def get_validation_loss(validation_pairs, input_lang, output_lang, lstm_model, batch_size=1):
num_batches = int(np.ceil(len(validation_pairs)/float(batch_size)))
val_losses_batches=[]
for chunk in more_itertools.chunked(validation_pairs, batch_size):
input_var, input_lengths, target_var, target_lengths = get_validation_batch(chunk, input_lang, output_lang)
val_loss_batch =evaluate_batch(lstm_model, input_var, target_var, target_lengths, batch_size)
val_losses_batches.append(val_loss_batch)
return np.mean(val_losses_batches)
# Building the models
def evaluate_batch(lstm_model, input_batches, target_batches, target_lengths, batch_size):
lstm_model.zero_grad()
# Also, we need to clear out the hidden state of the LSTM,
# detaching it from its history on the last instance.
lstm_model.hidden = lstm_model.init_hidden(batch_size=batch_size)
tag_scores = lstm_model(input_batches)
tag_scores=tag_scores.contiguous()
target_batches=target_batches.transpose(0,1).contiguous()
#print "Target batches", target_batches.size()
loss=masked_cross_entropy(tag_scores, target_batches, target_lengths)
return loss.data[0]
# In[23]:
def train(input_batches, input_lengths, target_batches, target_lengths, lstm_model, lstm_model_scheduler, batch_size, clip, max_length=MAX_LENGTH, validation_pairs=None, input_lang=None, output_lang=None, epoch_no=-1):
assert(validation_pairs is not None)
assert(epoch_no != -1)
# Zero gradients of both optimizers
lstm_model_scheduler.optimizer.zero_grad()
lstm_model.zero_grad()
loss = 0.0 # Added onto for each word
# Also, we need to clear out the hidden state of the LSTM,
# detaching it from its history on the last instance.
lstm_model.hidden = lstm_model.init_hidden(batch_size=batch_size)
tag_scores = lstm_model(input_batches)
tag_scores=tag_scores.contiguous()
target_batches=target_batches.transpose(0,1).contiguous()
loss=masked_cross_entropy(tag_scores, target_batches, target_lengths)
loss.backward()
# Clip gradient norms
ec = torch.nn.utils.clip_grad_norm(lstm_model.parameters(), clip)
lstm_model_scheduler.optimizer.step()
val_loss = get_validation_loss(validation_pairs, input_lang, output_lang, lstm_model)
# Update parameters with optimizers
lstm_model_scheduler.step(metrics=val_loss, epoch=epoch_no)
return loss.data[0], ec, val_loss
# ## Running training
#
# With everything in place we can actually initialize a network and start training.
#
# To start, we initialize models, optimizers, a loss function (criterion), and set up variables for plotting and tracking progress:
# In[24]:
# Configure models
def configure_and_train(input_lang, output_lang, pairs, validation_pairs, lstm_model_params, mlconfig):
embedding_dim = mlconfig['embedding_dim']
hidden_size = mlconfig['hidden_size']
n_layers = mlconfig['n_layers']
dropout = mlconfig['dropout']
batch_size = mlconfig['batch_size']
# Configure training/optimization
clip = mlconfig['clip']
learning_rate = mlconfig['learning_rate']
n_epochs = mlconfig['n_epochs']
plot_every = mlconfig['plot_every']
print_every = mlconfig['print_every']
evaluate_every = mlconfig['evaluate_every']
save_every = mlconfig['save_every']
patience = mlconfig['patience']
cooldown = mlconfig['cooldown']
epoch = 0
# Initialize models
lstm_model = LSTMTagger(embedding_dim, hidden_size, input_lang.n_words, output_lang.n_words, batch_size, dropout, n_layers=n_layers)
# Initialize optimizers and criterion
optimizer = optim.Adam(filter(lambda p: p.requires_grad, lstm_model.parameters()), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
# Move models to GPU
if USE_CUDA:
lstm_model.cuda()
# Keep track of time elapsed and running averages
start = time.time()
plot_losses = []
plot_losses_val = []
print_loss_total = 0 # Reset every print_every
plot_loss_total = 0 # Reset every plot_every
print_loss_total_val = 0
plot_loss_total_val = 0
# Begin!
ecs = []
dcs = []
eca = 0
dca = 0
lstm_model_scheduler = EarlyStopper(optimizer, 'min', factor=0.0, verbose=True, patience=patience, cooldown=cooldown)
best_val_loss=10.0
while epoch < n_epochs:
epoch += 1
# Get training data for this cycle
input_batches, input_lengths, target_batches, target_lengths = random_batch(input_lang, output_lang, pairs, batch_size)
# Run the train function
loss, ec, val_loss = train(
input_batches, input_lengths, target_batches, target_lengths,
lstm_model,
lstm_model_scheduler,
batch_size, clip,
MAX_LENGTH, validation_pairs, input_lang, output_lang, epoch)
# Keep track of loss
print_loss_total += loss
plot_loss_total += loss
print_loss_total_val+=val_loss
plot_loss_total_val+=val_loss
eca += ec
if val_loss < best_val_loss:
torch.save(lstm_model.state_dict(), lstm_model_params + "_best")
best_val_loss = val_loss
if epoch % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print_loss_avg_val = print_loss_total_val / print_every
print_loss_total_val = 0
print_summary = '%s (%f %f%%) training: %.4f val: %.4f' % (time_since(start, epoch / float(n_epochs)), epoch, epoch / float(n_epochs) * 100, print_loss_avg, print_loss_avg_val)
print(print_summary)
if epoch % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_loss_avg_val = plot_loss_total_val / plot_every
plot_losses.append(plot_loss_avg)
plot_losses_val.append(plot_loss_avg_val)
plot_loss_total = 0
plot_loss_total_val = 0
# TODO: Running average helper
ecs.append(eca / plot_every)
ecs_win = 'lstm_model grad (%s)' % hostname + input_lang.name + "-" + output_lang.name
tcs_win = 'training loss (%s)' % hostname + input_lang.name + "-" + output_lang.name
vcs_win = 'validation loss (%s)' % hostname + input_lang.name + "-" + output_lang.name
vis.line(np.array(ecs), win=ecs_win, opts={'title': ecs_win})
vis.line(np.array(plot_losses), plot_every*np.arange(1, len(np.array(plot_losses))+1), win=tcs_win, opts={'title': tcs_win})
vis.line(np.array(plot_losses_val), plot_every*np.arange(1, len(np.array(plot_losses_val))+1), win=vcs_win, opts={'title': vcs_win})
eca = 0
dca = 0
if (epoch % save_every) == 0:
torch.save(lstm_model.state_dict(), lstm_model_params + "_{}".format(epoch))
if lstm_model_scheduler.stop_status:
print "Stopping early"
break
torch.save(lstm_model.state_dict(), lstm_model_params + "_{}".format(epoch))
def read_langs(lang1, lang2, lang1_word_tokenizer, lang1_word_joiner, lang2_word_tokenizer, lang2_word_joiner, reverse=False):
print("Reading lines...")
# Read the file and split into lines
filename = './data/%s-%s.csv' % (lang1, lang2)
df = pd.read_csv(filename, sep='\t', encoding='utf-8')
source_lines=[s.strip() for s in df.source.values]
target_lines=[t.strip() for t in df.target.values]
pairs=zip(source_lines, target_lines)
# Reverse pairs, make Lang instances
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = Lang(lang2, lang2_word_tokenizer, lang2_word_joiner)
output_lang = Lang(lang1, lang1_word_tokenizer, lang1_word_joiner)
else:
input_lang = Lang(lang1, lang1_word_tokenizer, lang1_word_joiner)
output_lang = Lang(lang2, lang2_word_tokenizer, lang2_word_joiner)
print("Filtered to %d pairs" % len(pairs))
pairs = filter_pairs(pairs)
print("Indexing words...")
for pair in pairs:
input_lang.index_words(pair[0])
output_lang.index_words(pair[1])
print('Indexed %d words in input language, %d words in output' % (input_lang.n_words, output_lang.n_words))
print "Trimming languages"
input_lang.trim(MIN_COUNT)
output_lang.trim(MIN_COUNT)
return input_lang, output_lang, pairs
def prepare_data(lang1_name, lang2_name, lang1_word_tokenizer, lang1_word_joiner, lang2_word_tokenizer, lang2_word_joiner, reverse=False):
input_lang, output_lang, pairs = read_langs(lang1_name, lang2_name, lang1_word_tokenizer, lang1_word_joiner, lang2_word_tokenizer, lang2_word_joiner, reverse)
print("Read %d sentence pairs" % len(pairs))
keep_pairs = []
for pair in pairs:
input_sentence = pair[0]
output_sentence = pair[1]
keep_input = True
keep_output = True
for word in input_lang.word_tokenizer(input_sentence):
if word and word not in input_lang.word2index:
keep_input = False
break
for word in output_lang.word_tokenizer(output_sentence):
if word and word not in output_lang.word2index:
keep_output = False
break
# Remove if pair doesn't match input and output conditions
if keep_input and keep_output:
keep_pairs.append(pair)
print("Trimmed from %d pairs to %d, %.4f of total" % (len(pairs), len(keep_pairs), len(keep_pairs) / float(len(pairs))))
pairs = keep_pairs
print "Testing we can get a random batch."
random_batch(input_lang, output_lang, pairs, 2)
print "Testing models"
return input_lang, output_lang, pairs
def main(args):
global use_pretrained, pre_trained_embeddings
source_lang = args.source_lang
target_lang = args.target_lang
lstm_model_params = args.lstm_model_params
mlconfig={}
mlconfig['embedding_dim'] = args.embedding_dim
mlconfig['hidden_size'] = args.hidden_size
mlconfig['n_layers'] = args.n_layers
mlconfig['dropout'] = args.dropout
mlconfig['batch_size'] = args.batch_size
# Configure training/optimization
mlconfig['clip'] = args.clip
mlconfig['learning_rate'] = args.learning_rate
mlconfig['n_epochs'] = args.n_epochs
mlconfig['plot_every'] = args.plot_every
mlconfig['print_every'] = args.print_every
mlconfig['evaluate_every'] = args.evaluate_every
mlconfig['save_every'] = args.save_every
mlconfig['patience'] = args.patience
mlconfig['cooldown'] = args.cooldown
input_lang, output_lang, pairs = prepare_data(source_lang, target_lang, split_by_char_tokenizer, join_by_char_tokenizer, split_by_char_tokenizer, join_by_char_tokenizer, False)
print output_lang.word2index
if args.embedding_file is not None:
print "Loading pretrained embeddings"
emb_model = gensim.models.KeyedVectors.load_word2vec_format(args.embedding_file)
E=[]
for i,w in sorted(input_lang.index2word.items()):
print i, w
E.append(emb_model[w])
embeddings=torch.from_numpy(np.array(E))
use_pretrained = True
pre_trained_embeddings=embeddings
print "Created embeddings"
print "Testing we can get a random batch."
random_batch(input_lang, output_lang, pairs, 2)
print "Testing models"
print "Dumping splits"
train_pairs, test_pairs = train_test_split(pairs, test_size=0.1, random_state=args.seed)
train_pairs, validate_pairs = train_test_split(train_pairs, test_size=0.1, random_state=args.seed)
print "Training data size", len(train_pairs)
print "Validation data size", len(validate_pairs), validate_pairs[:10]
print "Test data size", len(test_pairs)
pickle.dump((input_lang, output_lang, train_pairs, validate_pairs, test_pairs), open(args.file_params, 'wb'))
print "Training"
configure_and_train(input_lang, output_lang, train_pairs[:], validate_pairs[:], args.lstm_model_params, mlconfig)
return
if __name__ == "__main__":
parser = configargparse.ArgParser()
parser.add('-c', '--config', required=True, is_config_file=True, help='config file path')
parser.add("-s", "--source_lang", dest="source_lang", help="Source language")
parser.add("-t", "--target_lang", dest="target_lang", help="Target language")
parser.add("-e", "--lstm_model_params", dest="lstm_model_params", help="Encoder params")
parser.add("-o", "--file_params", dest="file_params", help="File to dump the training and validation split")
parser.add("-m", "--embedding", dest="embedding_file", help="Pretrained word embeddings file")
parser.add('--embedding_dim', dest='embedding_dim', type=int)
parser.add('--hidden_size', dest='hidden_size', type=int)
parser.add('--n_layers', dest='n_layers', type=int)
parser.add('--dropout', dest='dropout', type=float)
parser.add('--batch_size', dest='batch_size', type=int)
parser.add('--clip', dest='clip', type=float)
parser.add('--learning_rate', dest='learning_rate', type=float)
parser.add('--n_epochs', dest='n_epochs', type=int)
parser.add('--plot_every', dest='plot_every', type=int)
parser.add('--print_every', dest='print_every', type=int)
parser.add('--evaluate_every', dest='evaluate_every', type=int)
parser.add('--save_every', dest='save_every', type=int)
parser.add('--patience', dest='patience', type=float)
parser.add('--cooldown', dest='cooldown', type=float)
parser.add('--seed', dest='seed', default=42, type=int)
args = parser.parse_args()
main(args)