This repository has been archived by the owner on Sep 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
anti-spoofing.js
54 lines (46 loc) · 1.94 KB
/
anti-spoofing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
const fs = require('fs');
const process = require('process');
const log = require('@vladmandic/pilogger');
const tf = require('@tensorflow/tfjs-node');
const modelOptions = {
modelPath: 'file://model/anti-spoofing.json',
outputTensors: ['activation_4'],
};
// load image from file and prepares image tensor that fits the model
async function loadImage(fileName, inputSize) {
const data = fs.readFileSync(fileName);
const obj = tf.tidy(() => {
const buffer = tf.node.decodeImage(data); // create rgb tensor from image
const resize = tf.image.resizeBilinear(buffer, [inputSize, inputSize]); // model input resolution is 128x128
const normalize = tf.div(resize, 255); // normalize input to range 0..1
const expand = tf.expandDims(normalize, 0);
const tensor = expand;
const img = { fileName, tensor, inputShape: [buffer.shape[1], buffer.shape[0]], outputShape: tensor.shape, size: buffer.size };
return img;
});
return obj;
}
async function main() {
log.header();
// init tensorflow
await tf.enableProdMode();
await tf.setBackend('tensorflow');
await tf.ready();
// load model
const model = await tf.loadGraphModel(modelOptions.modelPath);
log.info('Loaded model', modelOptions, 'tensors:', tf.engine().memory().numTensors, 'bytes:', tf.engine().memory().numBytes);
// load image and get approprite tensor for it
const inputSize = Object.values(model.modelSignature['inputs'])[0].tensorShape.dim[2].size;
const imageFile = process.argv.length > 2 ? process.argv[2] : null;
if (!imageFile || !fs.existsSync(imageFile)) {
log.error('Specify a valid image file');
process.exit();
}
const img = await loadImage(imageFile, inputSize);
log.info('Loaded image:', img.fileName, 'inputShape:', img.inputShape, 'outputShape:', img.outputShape);
// run actual prediction
const res = model.execute(img.tensor, modelOptions.outputTensors);
const real = await res.data();
log.data('Real?', real[0]);
}
main();