forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
127 lines (106 loc) · 3.13 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright © 2023-2024 Apple Inc.
import argparse
import os
import time
import mlx.core as mx
from mlx_whisper import audio, decoding, load_models, transcribe
audio_file = "mlx_whisper/assets/ls_test.flac"
def parse_arguments():
parser = argparse.ArgumentParser(description="Benchmark script.")
parser.add_argument(
"--mlx-dir",
type=str,
default="mlx_models",
help="The folder of MLX models",
)
parser.add_argument(
"--all",
action="store_true",
help="Use all available models, i.e. tiny,small,medium,large-v3",
)
parser.add_argument(
"-m",
"--models",
type=str,
help="Specify models as a comma-separated list (e.g., tiny,small,medium)",
)
return parser.parse_args()
def timer(fn, *args):
for _ in range(5):
fn(*args)
num_its = 10
tic = time.perf_counter()
for _ in range(num_its):
fn(*args)
toc = time.perf_counter()
return (toc - tic) / num_its
def feats(n_mels: int = 80):
data = audio.load_audio(audio_file)
data = audio.pad_or_trim(data)
mels = audio.log_mel_spectrogram(data, n_mels)
mx.eval(mels)
return mels
def model_forward(model, mels, tokens):
logits = model(mels, tokens)
mx.eval(logits)
return logits
def decode(model, mels):
return decoding.decode(model, mels)
def everything(model_path):
return transcribe(audio_file, path_or_hf_repo=model_path)
if __name__ == "__main__":
args = parse_arguments()
if args.all:
models = ["tiny", "small", "medium", "large-v3"]
elif args.models:
models = args.models.split(",")
else:
models = ["tiny"]
print("Selected models:", models)
feat_time = timer(feats)
print(f"\nFeature time {feat_time:.3f}")
for model_name in models:
model_path = f"mlx-community/whisper-{model_name}-mlx"
print(f"\nModel: {model_name.upper()}")
tokens = mx.array(
[
50364,
1396,
264,
665,
5133,
23109,
25462,
264,
6582,
293,
750,
632,
42841,
292,
370,
938,
294,
4054,
293,
12653,
356,
50620,
50620,
23563,
322,
3312,
13,
50680,
],
mx.int32,
)[None]
model = load_models.load_model(path_or_hf_repo=model_path, dtype=mx.float16)
mels = feats(model.dims.n_mels)[None].astype(mx.float16)
model_forward_time = timer(model_forward, model, mels, tokens)
print(f"Model forward time {model_forward_time:.3f}")
decode_time = timer(decode, model, mels)
print(f"Decode time {decode_time:.3f}")
everything_time = timer(everything, model_path)
print(f"Everything time {everything_time:.3f}")
print(f"\n{'-----' * 10}\n")