-
-
Notifications
You must be signed in to change notification settings - Fork 5.4k
/
Copy pathtest_moe.py
361 lines (313 loc) · 11.9 KB
/
test_moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""Tests for the MOE layers.
Run `pytest tests/kernels/test_moe.py`.
"""
import pytest
import torch
from transformers import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
import vllm.model_executor.layers.fused_moe # noqa
from tests.kernels.utils import (compute_max_diff, opcheck, stack_and_dev,
torch_moe, torch_moe_single)
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_topk, moe_align_block_size)
from vllm.model_executor.layers.fused_moe.moe_torch_iterative import (
fused_moe as iterative_moe)
from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
marlin_quantize)
from vllm.model_executor.models.mixtral import MixtralMoE
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
NUM_EXPERTS = [8, 64]
TOP_KS = [2, 6]
@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128])
@pytest.mark.parametrize("n", [128, 1024, 2048])
@pytest.mark.parametrize("k", [128, 511, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_fused_moe(
m: int,
n: int,
k: int,
e: int,
topk: int,
dtype: torch.dtype,
):
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
score = torch.randn((m, e), device="cuda", dtype=dtype)
triton_output = fused_moe(a, w1, w2, score, topk, renormalize=False)
torch_output = torch_moe(a, w1, w2, score, topk)
torch.testing.assert_close(triton_output, torch_output, atol=2e-2, rtol=0)
iterative_output = iterative_moe(a, w1, w2, score, topk, renormalize=False)
torch.testing.assert_close(iterative_output,
torch_output,
atol=2e-2,
rtol=0)
@pytest.mark.parametrize("dtype",
[torch.float32, torch.float16, torch.bfloat16])
@torch.inference_mode()
def test_mixtral_moe(dtype: torch.dtype):
"""Make sure our Mixtral MoE implementation agrees with the one from
huggingface."""
# Instantiate our and huggingface's MoE blocks
config = MixtralConfig()
hf_moe = MixtralSparseMoeBlock(config).to(dtype).to("cuda")
vllm_moe = MixtralMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
params_dtype=dtype,
tp_size=1,
).cuda()
# Load the weights
vllm_moe.gate.weight.data[:] = hf_moe.gate.weight.data
for i in range(config.num_local_experts):
weights = (hf_moe.experts[i].w1.weight.data,
hf_moe.experts[i].w3.weight.data)
vllm_moe.experts.w13_weight[i][:] = torch.cat(weights, dim=0)
vllm_moe.experts.w2_weight[i][:] = hf_moe.experts[i].w2.weight.data
# Generate input batch of dimensions [batch_size, seq_len, hidden_dim]
hf_inputs = torch.randn((1, 64, config.hidden_size)).to(dtype).to("cuda")
# vLLM uses 1D query [num_tokens, hidden_dim]
vllm_inputs = hf_inputs.flatten(0, 1)
# Run forward passes for both MoE blocks
hf_states, _ = hf_moe.forward(hf_inputs)
vllm_states = vllm_moe.forward(vllm_inputs)
mixtral_moe_tol = {
torch.float32: 1e-3,
torch.float16: 1e-3,
torch.bfloat16: 1e-2,
}
torch.testing.assert_close(hf_states.flatten(0, 1),
vllm_states,
rtol=mixtral_moe_tol[dtype],
atol=mixtral_moe_tol[dtype])
@pytest.mark.parametrize("m", [1, 33, 64, 222])
@pytest.mark.parametrize("n", [128, 2048])
@pytest.mark.parametrize("k", [128, 1024])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("group_size", [-1, 32, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("is_k_full", [True, False])
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
def test_fused_marlin_moe(
m: int,
n: int,
k: int,
e: int,
topk: int,
group_size: int,
act_order: bool,
num_bits: int,
is_k_full: bool,
):
current_platform.seed_everything(7)
# Filter act_order
if act_order:
if group_size == -1:
return
if group_size in (k, n):
return
else:
if not is_k_full:
return
quant_type = (scalar_types.uint4b8
if num_bits == 4 else scalar_types.uint8b128)
dtype = torch.float16
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
w_ref1_l = []
qweight1_l = []
scales1_l = []
g_idx1_l = []
sort_indices1_l = []
for i in range(w1.shape[0]):
test_perm = torch.randperm(k)
w_ref1, qweight1, scales1, g_idx1, sort_indices1, _ = marlin_quantize(
w1[i].transpose(1, 0), quant_type, group_size, act_order,
test_perm)
w_ref1_l.append(w_ref1)
qweight1_l.append(qweight1)
scales1_l.append(scales1)
g_idx1_l.append(g_idx1)
sort_indices1_l.append(sort_indices1)
w_ref1 = stack_and_dev(w_ref1_l)
qweight1 = stack_and_dev(qweight1_l).contiguous()
scales1 = stack_and_dev(scales1_l)
g_idx1 = stack_and_dev(g_idx1_l)
sort_indices1 = stack_and_dev(sort_indices1_l)
w_ref2_l = []
qweight2_l = []
scales2_l = []
g_idx2_l = []
sort_indices2_l = []
for i in range(w2.shape[0]):
test_perm = torch.randperm(n)
w_ref2, qweight2, scales2, g_idx2, sort_indices2, _ = marlin_quantize(
w2[i].transpose(1, 0), quant_type, group_size, act_order,
test_perm)
w_ref2_l.append(w_ref2)
qweight2_l.append(qweight2)
scales2_l.append(scales2)
g_idx2_l.append(g_idx2)
sort_indices2_l.append(sort_indices2)
w_ref2 = stack_and_dev(w_ref2_l)
qweight2 = stack_and_dev(qweight2_l).contiguous()
scales2 = stack_and_dev(scales2_l)
g_idx2 = stack_and_dev(g_idx2_l)
sort_indices2 = stack_and_dev(sort_indices2_l)
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, False)
triton_output = fused_moe(
a,
w_ref1.transpose(1, 2).contiguous(),
w_ref2.transpose(1, 2).contiguous(),
score,
topk,
renormalize=False,
)
marlin_output = torch.ops.vllm.fused_marlin_moe(
a,
qweight1,
qweight2,
scales1,
scales2,
score,
topk_weights,
topk_ids,
g_idx1=g_idx1,
g_idx2=g_idx2,
sort_indices1=sort_indices1,
sort_indices2=sort_indices2,
num_bits=num_bits,
is_k_full=is_k_full,
)
assert compute_max_diff(marlin_output, triton_output) < 4e-2
if ops.supports_moe_ops:
token_expert_indicies = torch.empty(m,
topk,
dtype=torch.int32,
device=a.device)
opcheck(torch.ops._moe_C.topk_softmax, (
topk_weights,
topk_ids,
token_expert_indicies,
score.float(),
))
block_size_m = 4
sorted_token_ids, _, _ = moe_align_block_size(topk_ids, block_size_m,
e)
max_workspace_size = ((m + 255) // 256) * (max(2 * n, k) // 64) * 16
workspace = torch.zeros(max_workspace_size,
dtype=torch.int,
device="cuda",
requires_grad=False)
zp = torch.empty((0, 0),
dtype=dtype,
device="cuda",
requires_grad=False)
opcheck(torch.ops._moe_C.marlin_gemm_moe,
(a, qweight1, sorted_token_ids, topk_weights, topk_ids,
scales1, zp, g_idx1, sort_indices1, workspace, quant_type.id,
m, 2 * n, k, True, e, topk, block_size_m, True, False))
@pytest.mark.skip("This test is here for the sake of debugging, "
"don't run it in automated tests.")
@pytest.mark.parametrize("m", [64, 512, 222, 33, 1])
@pytest.mark.parametrize("n", [128, 2048, 256, 1024])
@pytest.mark.parametrize("k", [128, 1024, 512])
@pytest.mark.parametrize("e", [8, 64])
@pytest.mark.parametrize("topk", [2, 6])
@pytest.mark.parametrize("group_size", [-1, 32, 64, 128])
@pytest.mark.parametrize("act_order", [True, False])
@pytest.mark.parametrize("num_bits", [4, 8])
@pytest.mark.parametrize("is_k_full", [True, False])
@pytest.mark.skipif(current_platform.is_rocm(), reason="Skip for rocm")
def test_single_marlin_moe_multiply(
m: int,
n: int,
k: int,
e: int,
topk: int,
group_size: int,
act_order: bool,
num_bits: int,
is_k_full: bool,
):
# Filter act_order
if act_order:
if group_size == -1:
return
if group_size == k:
return
else:
if not is_k_full:
return
quant_type = (scalar_types.uint4b8
if num_bits == 4 else scalar_types.uint8b128)
dtype = torch.float16
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w = torch.randn((e, n, k), device="cuda", dtype=dtype) / 10
w_ref_l = []
qweights_l = []
scales_l = []
g_idx_l = []
sort_indices_l = []
for i in range(w.shape[0]):
test_perm = torch.randperm(k)
w_ref, qweight, scales, g_idx, sort_indices, _ = marlin_quantize(
w[i].transpose(1, 0), quant_type, group_size, act_order, test_perm)
w_ref_l.append(w_ref)
qweights_l.append(qweight)
scales_l.append(scales)
g_idx_l.append(g_idx)
sort_indices_l.append(sort_indices)
w_ref = stack_and_dev(w_ref_l)
qweight = stack_and_dev(qweights_l).contiguous()
scales = stack_and_dev(scales_l)
g_idx = stack_and_dev(g_idx_l)
sort_indices = stack_and_dev(sort_indices_l)
score = torch.randn((m, e), device="cuda", dtype=dtype)
marlin_output = torch.ops.vllm.single_marlin_moe(
a,
qweight,
scales,
score,
topk,
renormalize=False,
g_idx=g_idx,
sort_indices=sort_indices,
num_bits=num_bits,
is_k_full=is_k_full,
)
torch_output = torch_moe_single(a, w_ref.transpose(1, 2), score, topk)
assert compute_max_diff(marlin_output, torch_output) < 1e-2
def test_moe_align_block_size_opcheck():
num_experts = 4
block_size = 4
topk_ids = torch.randint(0,
num_experts, (3, 4),
dtype=torch.int32,
device='cuda')
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids = torch.empty((max_num_tokens_padded, ),
dtype=torch.int32,
device=topk_ids.device)
sorted_ids.fill_(topk_ids.numel())
max_num_m_blocks = max_num_tokens_padded // block_size
expert_ids = torch.empty((max_num_m_blocks, ),
dtype=torch.int32,
device=topk_ids.device)
num_tokens_post_pad = torch.empty((1),
dtype=torch.int32,
device=topk_ids.device)
opcheck(torch.ops._moe_C.moe_align_block_size,
(topk_ids, num_experts, block_size, sorted_ids, expert_ids,
num_tokens_post_pad))