We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
vllm version:
e9de9dd551ac595a9f3825fcd1507deceef4f332
Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.5.0-1018-oracle-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 GPU 4: NVIDIA H100 80GB HBM3 GPU 5: NVIDIA H100 80GB HBM3 GPU 6: NVIDIA H100 80GB HBM3 GPU 7: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.161.07 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-111 Off-line CPU(s) list: 112-223 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480+ CPU family: 6 Model: 143 Thread(s) per core: 1 Core(s) per socket: 56 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 0.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55 NUMA node1 CPU(s): 56-111 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] No relevant packages [conda] No relevant packages ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: N/A vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 NIC10 NIC11 NIC12 NIC13 NIC14 NIC15 NIC16 NIC17 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PXB PXB NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE PXB PXB NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE NODE NODE NODE NODE PXB PXB NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE NODE NODE NODE NODE NODE PXB PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS 0-55 0 N/A GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS PXB PXB NODE NODE NODE NODE NODE NODE NODE 56-111 1 N/A GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE PXB PXB NODE NODE NODE NODE 56-111 1 N/A GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE PXB PXB NODE NODE 56-111 1 N/A GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE PXB PXB 56-111 1 N/A NIC0 PXB NODE NODE NODE SYS SYS SYS SYS X PIX NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC1 PXB NODE NODE NODE SYS SYS SYS SYS PIX X NODE NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC2 NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE X NODE NODE NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC3 NODE PXB NODE NODE SYS SYS SYS SYS NODE NODE NODE X PIX NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC4 NODE PXB NODE NODE SYS SYS SYS SYS NODE NODE NODE PIX X NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC5 NODE NODE PXB NODE SYS SYS SYS SYS NODE NODE NODE NODE NODE X PIX NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC6 NODE NODE PXB NODE SYS SYS SYS SYS NODE NODE NODE NODE NODE PIX X NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC7 NODE NODE NODE PXB SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE X PIX SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC8 NODE NODE NODE PXB SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE PIX X SYS SYS SYS SYS SYS SYS SYS SYS SYS NIC9 SYS SYS SYS SYS PXB NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS X PIX NODE NODE NODE NODE NODE NODE NODE NIC10 SYS SYS SYS SYS PXB NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS PIX X NODE NODE NODE NODE NODE NODE NODE NIC11 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE X NODE NODE NODE NODE NODE NODE NIC12 SYS SYS SYS SYS NODE PXB NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE X PIX NODE NODE NODE NODE NIC13 SYS SYS SYS SYS NODE PXB NODE NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE PIX X NODE NODE NODE NODE NIC14 SYS SYS SYS SYS NODE NODE PXB NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE X PIX NODE NODE NIC15 SYS SYS SYS SYS NODE NODE PXB NODE SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE PIX X NODE NODE NIC16 SYS SYS SYS SYS NODE NODE NODE PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE X PIX NIC17 SYS SYS SYS SYS NODE NODE NODE PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS NODE NODE NODE NODE NODE NODE NODE PIX X Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks NIC Legend: NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_2 NIC3: mlx5_3 NIC4: mlx5_4 NIC5: mlx5_5 NIC6: mlx5_6 NIC7: mlx5_7 NIC8: mlx5_8 NIC9: mlx5_9 NIC10: mlx5_10 NIC11: mlx5_11 NIC12: mlx5_12 NIC13: mlx5_13 NIC14: mlx5_14 NIC15: mlx5_15 NIC16: mlx5_16 NIC17: mlx5_17 (base) ubuntu@compute-permanent-node-406:~/vllm$
Build:
git clone https://github.com/vllm-project/vllm.git cd ~/vllm conda create -n vllm -y conda activate vllm conda install python=3.10 -y pip install -e . pip install hf_transfer pip install torchvision
Ran:
cd ~/vllm/ # https://github.com/vllm-project/vllm/blob/afed90a0344b1b0ce6aae46efc630adb489ec769/examples/phi3v_example.py#L15 export NCCL_IGNORE_DISABLED_P2P=1 export CUDA_VISIBLE_DEVICES=5 python -m vllm.entrypoints.openai.api_server --port=5063 \ --host=0.0.0.0 --model microsoft/Phi-3-vision-128k-instruct \ --tensor-parallel-size=1 --seed 1234 \ --trust-remote-code \ --tensor-parallel-size=1 \ --max-num-batched-tokens=131072 --max-log-len=100 \ --image-input-type=pixel_values \ --image-token-id=32044 \ --image-input-shape="1,3,1008,1344" \ --image-feature-size=1921 \ --download-dir=$HOME/.cache/huggingface/hub &> vllm_phi3_vision.log & disown %1
WARNING 06-28 17:03:32 phi3v.py:322] Dynamic image shape is currently not supported. Resizing input image to (1344, 1008). WARNING 06-28 17:03:32 phi3v.py:322] Dynamic image shape is currently not supported. Resizing input image to (1344, 1008). ERROR 06-28 17:03:32 async_llm_engine.py:53] Engine background task failed ERROR 06-28 17:03:32 async_llm_engine.py:53] Traceback (most recent call last): ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/engine/async_llm_engine.py", line 43, in _log_task_completion ERROR 06-28 17:03:32 async_llm_engine.py:53] return_value = task.result() ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/engine/async_llm_engine.py", line 550, in run_engine_loop ERROR 06-28 17:03:32 async_llm_engine.py:53] has_requests_in_progress = await self.engine_step() ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/engine/async_llm_engine.py", line 523, in engine_step ERROR 06-28 17:03:32 async_llm_engine.py:53] request_outputs = await self.engine.step_async() ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/engine/async_llm_engine.py", line 236, in step_async ERROR 06-28 17:03:32 async_llm_engine.py:53] output = await self.model_executor.execute_model_async( ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/executor/gpu_executor.py", line 121, in execute_model_async ERROR 06-28 17:03:32 async_llm_engine.py:53] output = await make_async(self.driver_worker.execute_model ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/concurrent/futures/thread.py", line 58, in run ERROR 06-28 17:03:32 async_llm_engine.py:53] result = self.fn(*self.args, **self.kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context ERROR 06-28 17:03:32 async_llm_engine.py:53] return func(*args, **kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/worker/worker.py", line 290, in execute_model ERROR 06-28 17:03:32 async_llm_engine.py:53] output = self.model_runner.execute_model(seq_group_metadata_list, ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context ERROR 06-28 17:03:32 async_llm_engine.py:53] return func(*args, **kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/worker/model_runner.py", line 753, in execute_model ERROR 06-28 17:03:32 async_llm_engine.py:53] hidden_states = model_executable( ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl ERROR 06-28 17:03:32 async_llm_engine.py:53] return self._call_impl(*args, **kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl ERROR 06-28 17:03:32 async_llm_engine.py:53] return forward_call(*args, **kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/model_executor/models/phi3v.py", line 376, in forward ERROR 06-28 17:03:32 async_llm_engine.py:53] inputs_embeds = self.vision_embed_tokens( ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl ERROR 06-28 17:03:32 async_llm_engine.py:53] return self._call_impl(*args, **kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/miniconda3/envs/vllm/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl ERROR 06-28 17:03:32 async_llm_engine.py:53] return forward_call(*args, **kwargs) ERROR 06-28 17:03:32 async_llm_engine.py:53] File "/home/ubuntu/vllm/vllm/model_executor/models/phi3v.py", line 220, in forward ERROR 06-28 17:03:32 async_llm_engine.py:53] sub_img = sub_img[:B_] ERROR 06-28 17:03:32 async_llm_engine.py:53] TypeError: only integer tensors of a single element can be converted to an index
Ran fine for few days, then hit this. Unclear exactly what triggered.
The text was updated successfully, but these errors were encountered:
It is the same as #5885, which has been fixed already. Are you sure you are using the latest main branch?
main
Sorry, something went wrong.
I shared my sha: e9de9dd
I'm trying latest main now and will see. If you think it's already fixed, then should be able to close this issue.
@pseudotensor Sounds good - I'm going to close this issue now, but please report back if you find the issue persist!
No branches or pull requests
Your current environment
vllm version:
Build:
Ran:
🐛 Describe the bug
Ran fine for few days, then hit this. Unclear exactly what triggered.
The text was updated successfully, but these errors were encountered: