Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Pixtral-12B not supported on CPU #8693

Closed
1 task done
joelimgu opened this issue Sep 21, 2024 · 8 comments
Closed
1 task done

[Bug]: Pixtral-12B not supported on CPU #8693

joelimgu opened this issue Sep 21, 2024 · 8 comments
Labels
bug Something isn't working

Comments

@joelimgu
Copy link

Your current environment

The output of `python collect_env.py`
Collecting environment information...
WARNING 09-21 15:29:13 _custom_ops.py:18] Failed to import from vllm._C with ImportError('libcuda.so.1: cannot open shared object file: No such file or directory')
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.30.3
Libc version: glibc-2.35

Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.8.0-40-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               16
On-line CPU(s) list:                  0-15
Vendor ID:                            AuthenticAMD
Model name:                           AMD Ryzen 7 5800X 8-Core Processor
CPU family:                           25
Model:                                33
Thread(s) per core:                   2
Core(s) per socket:                   8
Socket(s):                            1
Stepping:                             0
Frequency boost:                      enabled
CPU max MHz:                          4850.1948
CPU min MHz:                          2200.0000
BogoMIPS:                             7585.94
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap
Virtualization:                       AMD-V
L1d cache:                            256 KiB (8 instances)
L1i cache:                            256 KiB (8 instances)
L2 cache:                             4 MiB (8 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-15
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.68
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.2
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.1.post2@9ba0817ff1eb514f51cc6de9cb8e16c98d6ee44f
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect

Model Input Dumps

No response

🐛 Describe the bug

I am running into an error when trying to run Pixtral12B on CPU. Here is the sample code I am using:

from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Pixtral-12B-2409"

sampling_params = SamplingParams(max_tokens=8192)

llm = LLM(model=model_name, tokenizer_mode="mistral")

prompt = "Describe this image in one sentence."
image_url = "https://picsum.photos/id/237/200/300"

messages = [
    {
        "role": "user",
        "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": image_url}}]
    },
]

outputs = llm.chat(messages, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)

And here is the output of the program:

python3 main.py
WARNING 09-21 15:31:18 _custom_ops.py:18] Failed to import from vllm._C with ImportError('libcuda.so.1: cannot open shared object file: No such file or directory')
INFO 09-21 15:31:19 config.py:1653] Downcasting torch.float32 to torch.float16.
WARNING 09-21 15:31:19 arg_utils.py:910] The model has a long context length (128000). This may cause OOM errors during the initial memory profiling phase, or result in low performance due to small KV cache space. Consider setting --max-model-len to a smaller value.
INFO 09-21 15:31:19 llm_engine.py:223] Initializing an LLM engine (v0.6.1.post2) with config: model='mistralai/Pixtral-12B-2409', speculative_config=None, tokenizer='mistralai/Pixtral-12B-2409', skip_tokenizer_init=False, tokenizer_mode=mistral, revision=None, override_neuron_config=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=128000, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=mistralai/Pixtral-12B-2409, use_v2_block_manager=False, num_scheduler_steps=1, enable_prefix_caching=False, use_async_output_proc=True)
Traceback (most recent call last):
  File "/home/joel/Documents/Code/Personal/pixtral/main.py", line 8, in <module>
    llm = LLM(model=model_name, tokenizer_mode="mistral")
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 178, in __init__
    self.llm_engine = LLMEngine.from_engine_args(
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 550, in from_engine_args
    engine = cls(
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 317, in __init__
    self.model_executor = executor_class(
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 47, in __init__
    self._init_executor()
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 38, in _init_executor
    self.driver_worker = self._create_worker()
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 105, in _create_worker
    return create_worker(**self._get_create_worker_kwargs(
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 24, in create_worker
    wrapper.init_worker(**kwargs)
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 449, in init_worker
    self.worker = worker_class(*args, **kwargs)
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/worker/worker.py", line 99, in __init__
    self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 960, in __init__
    self.attn_backend = get_attn_backend(
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/attention/selector.py", line 108, in get_attn_backend
    backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
  File "/home/joel/Documents/Code/Personal/pixtral/.venv/lib/python3.10/site-packages/vllm/attention/selector.py", line 215, in which_attn_to_use
    if current_platform.get_device_capability()[0] < 8:
TypeError: 'NoneType' object is not subscriptable

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@joelimgu joelimgu added the bug Something isn't working label Sep 21, 2024
@DarkLight1337
Copy link
Member

DarkLight1337 commented Sep 21, 2024

I think you need to install the ROCm version of PyTorch, e.g..

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.1

@joelimgu
Copy link
Author

Thanks for the answer. I've tried installing the ROCm version of PyTorch, but I got the same result. But I am trying to run it on CPU, I have an AMD GPU, but it doesn't support ROCm.

@DarkLight1337
Copy link
Member

I see, sorry I missed the part about wanting to support this on CPU. Let me update the title to reflect this.

@DarkLight1337 DarkLight1337 changed the title [Bug]: TypeError: 'NoneType' object is not subscriptable [Bug]: Pixtral-12B not supported on CPU Sep 21, 2024
@DarkLight1337
Copy link
Member

Have you followed the installation instructions for CPU shown here?

@DarkLight1337
Copy link
Member

DarkLight1337 commented Sep 21, 2024

@youkaichao how can I tell from the collect_env output whether vLLM was compiled for CPU or GPU?

@joelimgu
Copy link
Author

Yes, I've tried following the CPU tutorial. Same problem if I run it natively. I have a memory leak if I run it on docker. It takes 100G of ram, but there is already a discussion on that (#309).

@DarkLight1337
Copy link
Member

DarkLight1337 commented Sep 22, 2024

I think #8534 should fix the particular error you're running into by considering the case of device_capability=None, however I am not sure whether the model can run. Can you try installing vLLM from source using the latest main branch?

@youkaichao
Copy link
Member

this section shows vllm build flags:

vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

3 participants