Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Loading mistralai/Mixtral-8x22B-Instruct-v0.1 raises TypeError: a bytes-like object is required, not 'str' #9821

Closed
brnrc opened this issue Oct 30, 2024 · 5 comments · Fixed by #9827
Labels
bug Something isn't working

Comments

@brnrc
Copy link

brnrc commented Oct 30, 2024

Your current environment

The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.30.5
Libc version: glibc-2.31

Python version: 3.10.15 | packaged by conda-forge | (main, Sep 20 2024, 16:37:05) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-32-cloud-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 550.90.07
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Byte Order:                           Little Endian
Address sizes:                        46 bits physical, 48 bits virtual
CPU(s):                               96
On-line CPU(s) list:                  0-95
Thread(s) per core:                   2
Core(s) per socket:                   24
Socket(s):                            2
NUMA node(s):                         2
Vendor ID:                            GenuineIntel
CPU family:                           6
Model:                                85
Model name:                           Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping:                             7
CPU MHz:                              2200.198
BogoMIPS:                             4400.39
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            1.5 MiB
L1i cache:                            1.5 MiB
L2 cache:                             48 MiB
L3 cache:                             77 MiB
NUMA node0 CPU(s):                    0-23,48-71
NUMA node1 CPU(s):                    24-47,72-95
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.25.2
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==11.495.46
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.46.0
[pip3] triton==3.0.0
[conda] numpy                     1.25.2                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.1.3.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.1.105                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.1.105                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.0.2.54                pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.2.106               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.4.5.107               pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.1.0.106               pypi_0    pypi
[conda] nvidia-ml-py              11.495.46                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.77                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.1.105                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.4.0                    pypi_0    pypi
[conda] torchvision               0.19.0                   pypi_0    pypi
[conda] transformers              4.46.0                   pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV12    NV12    NV12    NV12    NV12    NV12    NV12    0-23,48-71      0               N/A
GPU1    NV12     X      NV12    NV12    NV12    NV12    NV12    NV12    0-23,48-71      0               N/A
GPU2    NV12    NV12     X      NV12    NV12    NV12    NV12    NV12    0-23,48-71      0               N/A
GPU3    NV12    NV12    NV12     X      NV12    NV12    NV12    NV12    0-23,48-71      0               N/A
GPU4    NV12    NV12    NV12    NV12     X      NV12    NV12    NV12    24-47,72-95     1               N/A
GPU5    NV12    NV12    NV12    NV12    NV12     X      NV12    NV12    24-47,72-95     1               N/A
GPU6    NV12    NV12    NV12    NV12    NV12    NV12     X      NV12    24-47,72-95     1               N/A
GPU7    NV12    NV12    NV12    NV12    NV12    NV12    NV12     X      24-47,72-95     1               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

When trying to serve mistralai/Mixtral-8x22B-Instruct-v0.1 in a single-node with 8 GPUs I get the error below:

VLLM_LOGGING_LEVEL=DEBUG python -m vllm.entrypoints.openai.api_server  \
  --model mistralai/Mixtral-8x22B-Instruct-v0.1   \
  --tensor-parallel-size 8   \
  --tokenizer-mode="mistral"

...

INFO 10-29 22:43:58 multiproc_worker_utils.py:120] Killing local vLLM worker processes
DEBUG 10-29 22:43:58 client.py:170] Waiting for output from MQLLMEngine.
Process SpawnProcess-1:
Traceback (most recent call last):
  File "/opt/conda/lib/python3.10/site-packages/vllm/worker/model_runner_base.py", line 116, in _wrapper
    return func(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 1658, in execute_model
    hidden_or_intermediate_states = model_executable(
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/models/mixtral.py", line 380, in forward
    hidden_states = self.model(input_ids, positions, kv_caches,
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/models/mixtral.py", line 300, in forward
    hidden_states, residual = layer(positions, hidden_states,
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/models/mixtral.py", line 244, in forward
    hidden_states = self.block_sparse_moe(hidden_states)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/models/mixtral.py", line 101, in forward
    final_hidden_states = self.experts(hidden_states, router_logits)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
    return forward_call(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/fused_moe/layer.py", line 474, in forward
    final_hidden_states = self.quant_method.apply(
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/quantization/fp8.py", line 495, in apply
    return fused_experts(x,
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/fused_moe/fused_moe.py", line 510, in fused_experts
    config = get_config_func(M)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/fused_moe/fused_moe.py", line 369, in try_get_optimal_moe_config
    configs = get_moe_configs(E, N, dtype)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/fused_moe/fused_moe.py", line 310, in get_moe_configs
    json_file_name = get_config_file_name(E, N, dtype)
  File "/opt/conda/lib/python3.10/site-packages/vllm/model_executor/layers/fused_moe/fused_moe.py", line 291, in get_config_file_name
    device_name = current_platform.get_device_name().replace(" ", "_")
TypeError: a bytes-like object is required, not 'str'

You can reproduce the error with the cli above (and a similar environment) or with the snippet below:

from vllm.platforms import current_platform
print(current_platform)
current_platform.get_device_name().replace(" ", "_")
$ python
Python 3.10.15 | packaged by conda-forge | (main, Sep 20 2024, 16:37:05) [GCC 13.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from vllm.platforms import current_platform
>>> print(current_platform)
<vllm.platforms.cuda.CudaPlatform object at 0x7fa6bca82b30>
>>> name = current_platform.get_device_name()
>>> name
b'NVIDIA A100-SXM4-80GB'
>>> name.replace(" ", "_")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: a bytes-like object is required, not 'str'
@brnrc brnrc added the bug Something isn't working label Oct 30, 2024
@brnrc
Copy link
Author

brnrc commented Oct 30, 2024

I managed to fix this by explicitly casting the device name to str, since current_platform.get_device_name() is returning bytes instead of str. After applying the patch I can load the model without problems.

diff --git a/vllm/model_executor/layers/fused_moe/fused_moe.py b/vllm/model_executor/layers/fused_moe/fused_moe.py
index 1cf5c225..b43bb39a 100644
--- a/vllm/model_executor/layers/fused_moe/fused_moe.py
+++ b/vllm/model_executor/layers/fused_moe/fused_moe.py
@@ -288,7 +288,7 @@ def invoke_fused_moe_kernel(A: torch.Tensor, B: torch.Tensor, C: torch.Tensor,
 
 
 def get_config_file_name(E: int, N: int, dtype: Optional[str]) -> str:
-    device_name = current_platform.get_device_name().replace(" ", "_")
+    device_name = str(current_platform.get_device_name()).replace(" ", "_")
     dtype_selector = "" if not dtype else f",dtype={dtype}"
     return f"E={E},N={N},device_name={device_name}{dtype_selector}.json"

@brnrc brnrc changed the title [Bug]: current_platform.get_device_name() returns bytes instead of str [Bug]: Loading mistralai/Mixtral-8x22B-Instruct-v0.1 raises TypeError: a bytes-like object is required, not 'str' Oct 30, 2024
@jeejeelee
Copy link
Collaborator

It look likes your nvidia-ml-py is old , you can try updating it :

pip install nvidia-ml-py==12.560.30

@brnrc
Copy link
Author

brnrc commented Oct 30, 2024

It look likes your nvidia-ml-py is old , you can try updating it :

pip install nvidia-ml-py==12.560.30

@jeejeelee Thank you for the quick reply. What do you think of setting a minimum version for nvidia-ml-py? Seems like the version pinning was dropped after moving away from pynvml (e4bf860).

- nvidia-ml-py # for pynvml package
+ nvidia-ml-py >= 12.560.30 # for pynvml package 

@jeejeelee
Copy link
Collaborator

IMHO, we should add a minimum version, cc @youkaichao

@youkaichao
Copy link
Member

sounds good, we can specify nvidia-ml-py >= 12.560.30

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants