-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence-learning.py
164 lines (147 loc) · 5.28 KB
/
sequence-learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import datetime
import re
from sklearn.metrics import confusion_matrix, classification_report
from seqlearn.hmm import MultinomialHMM
from seqlearn.evaluation import SequenceKFold
filename = "./dataset/data" # 15 Milan dataset http://ailab.wsu.edu/casas/datasets/
def load_dataset():
# dateset fields
timestamps = []
sensors = []
values = []
activities = []
activity = '' # empty
print('Loading dataset ...')
with open(filename, 'rb') as features:
database = features.readlines()
for line in database: # each line
f_info = line.decode().split() # find fields
if 'M' == f_info[2][0] or 'D' == f_info[2][0] or 'T' == f_info[2][0]:
# choose only M D T sensors, avoiding unexpected errors
if not ('.' in str(np.array(f_info[0])) + str(np.array(f_info[1]))):
f_info[1] = f_info[1] + '.000000'
timestamps.append(datetime.datetime.strptime(str(np.array(f_info[0])) + str(np.array(f_info[1])),
"%Y-%m-%d%H:%M:%S.%f"))
sensors.append(str(np.array(f_info[2])))
values.append(str(np.array(f_info[3])))
if len(f_info) == 4: # if activity does not exist
activities.append(activity)
else: # if activity exists
des = str(' '.join(np.array(f_info[4:])))
if 'begin' in des:
activity = re.sub('begin', '', des)
if activity[-1] == ' ': # if white space at the end
activity = activity[:-1] # delete white space
activities.append(activity)
if 'end' in des:
activities.append(activity)
activity = ''
features.close()
# dictionaries: assigning keys to values
temperature = []
for element in values:
try:
temperature.append(float(element))
except ValueError:
pass
sensorsList = sorted(set(sensors))
dictSensors = {}
for i, sensor in enumerate(sensorsList):
dictSensors[sensor] = i
# print(dictSensors)
activityList = sorted(set(activities))
dictActivities = {}
for i, activity in enumerate(activityList):
dictActivities[activity] = i
# print(dictActivities)
valueList = sorted(set(values))
dictValues = {}
for i, v in enumerate(valueList):
dictValues[v] = i
# print(dictValues)
dictObs = {}
count = 0
for key in dictSensors.keys():
if "M" in key:
dictObs[key + "OFF"] = count
count += 1
dictObs[key + "ON"] = count
count += 1
if "D" in key:
dictObs[key + "CLOSE"] = count
count += 1
dictObs[key + "OPEN"] = count
count += 1
if "T" in key:
for temp in range(0, int((max(temperature) - min(temperature)) * 2) + 1):
dictObs[key + str(float(temp / 2.0) + min(temperature))] = count + temp
# print(dictObs)
X = []
Y = []
for kk, s in enumerate(sensors):
if "T" in s:
X.append(dictObs[s + str(round(float(values[kk]), 1))])
else:
X.append(dictObs[s + str(values[kk])])
Y.append(dictActivities[activities[kk]])
data = [X, Y, dictActivities]
return data
def seq_lengths(labels):
lengths = []
for i, n in enumerate(labels):
if (i == 0):
seq = n
count = 1
else:
if (seq == n):
count += 1
else:
if (seq != n):
seq = n
lengths.append(count)
count = 1
if (i == (len(labels)-1)):
lengths.append(count)
return lengths
def dataset_split(train_index, test_index):
X_train = []
Y_train = []
X_test = []
Y_test = []
for idx in train_index:
X_train.append(data[0][idx])
Y_train.append(data[1][idx])
for idx in test_index:
X_test.append(data[0][idx])
Y_test.append(data[1][idx])
# X_train = np.array(X_train).reshape(-1,1)
X_tr = np.array(X_train)
X_train = (((X_tr[:, None] & (1 << np.arange(8)))) > 0).astype(int) # vector-> binary matrix
Y_train = np.array(Y_train)
# X_test = np.array(X_test).reshape(-1,1)
X_te = np.array(X_test)
X_test = (((X_te[:, None] & (1 << np.arange(8)))) > 0).astype(int)
Y_test = np.array(Y_test)
return [X_train, X_test, Y_train, Y_test]
data = load_dataset()
kf = SequenceKFold(seq_lengths(data[1]),2)
for tuple in kf:
train_len = tuple[1]
test_len = tuple[3]
split = dataset_split(tuple[0], tuple[2])
#train the model
clf = MultinomialHMM()
clf.fit(split[0],split[2],train_len)
#evaluate the model
Y_pred = clf.predict(split[1], test_len)
print('Accuracy:')
print(clf.score(split[1], split[3], test_len))
print('Confusion matrix:')
labels = list(data[2].values())
print(confusion_matrix(split[3], Y_pred, labels))
print('Report:')
target_names = list(data[2].keys())
print(classification_report(split[3], Y_pred, target_names=target_names))