-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrpca_admm.py
166 lines (131 loc) · 5.11 KB
/
rpca_admm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
import time
from numpy import *
from numpy.linalg import svd, norm
from multiprocessing.pool import ThreadPool
def prox_l1(v,lambdat):
"""
The proximal operator of the l1 norm.
prox_l1(v,lambdat) is the proximal operator of the l1 norm
with parameter lambdat.
Adapted from: https://github.com/cvxgrp/proximal/blob/master/matlab/prox_l1.m
"""
return maximum(0, v - lambdat) - maximum(0, -v - lambdat)
def prox_matrix(v,lambdat,prox_f):
"""
The proximal operator of a matrix function.
Suppose F is a orthogonally invariant matrix function such that
F(X) = f(s(X)), where s is the singular value map and f is some
absolutely symmetric function. Then
X = prox_matrix(V,lambdat,prox_f)
evaluates the proximal operator of F via the proximal operator
of f. Here, it must be possible to evaluate prox_f as prox_f(v,lambdat).
For example,
prox_matrix(V,lambdat,prox_l1)
evaluates the proximal operator of the nuclear norm at V
(i.e., the singular value thresholding operator).
Adapted from: https://github.com/cvxgrp/proximal/blob/master/matlab/prox_matrix.m
"""
U,S,V = svd(v,full_matrices=False)
S = S.reshape((len(S),1))
pf = diagflat(prox_f(S,lambdat))
# It should be V.conj().T given MATLAB-Python conversion, but matrix
# matches with out the .T so kept it.
return U.dot(pf).dot(V.conj())
def avg(*args):
N = len(args)
x = 0
for k in range(N):
x = x + args[k]
x = x/N
return x
def objective(X_1, g_2, X_2, g_3, X_3):
"""
Objective function for Robust PCA:
Noise - squared frobenius norm (makes X_i small)
Background - nuclear norm (makes X_i low rank)
Foreground - entrywise L1 norm (makes X_i small)
"""
tmp = svd(X_3,compute_uv=0)
tmp = tmp.reshape((len(tmp),1))
return norm(X_1,'fro')**2 + g_2*norm(hstack(X_2),1) + g_3*norm(tmp,1)
def rpcaADMM(data):
"""
ADMM implementation of matrix decomposition. In this case, RPCA.
Adapted from: http://web.stanford.edu/~boyd/papers/prox_algs/matrix_decomp.html
"""
pool = ThreadPool(processes=3) # Create thread pool for asynchronous processing
N = 3 # the number of matrices to split into
# (and cost function expresses how you want them)
A = float_(data) # A = S + L + V
m,n = A.shape
g2_max = norm(hstack(A).T,inf)
g3_max = norm(A,2)
g2 = 0.15*g2_max
g3 = 0.15*g3_max
MAX_ITER = 100
ABSTOL = 1e-4
RELTOL = 1e-2
start = time.time()
lambdap = 1.0
rho = 1.0/lambdap
X_1 = zeros((m,n))
X_2 = zeros((m,n))
X_3 = zeros((m,n))
z = zeros((m,N*n))
U = zeros((m,n))
# Saving state
h = {}
h['objval'] = zeros(MAX_ITER)
h['r_norm'] = zeros(MAX_ITER)
h['s_norm'] = zeros(MAX_ITER)
h['eps_pri'] = zeros(MAX_ITER)
h['eps_dual'] = zeros(MAX_ITER)
def x1update(x,b,l):
return (1.0/(1.0+l))*(x - b)
def x2update(x,b,l,g,pl):
return pl(x - b, l*g)
def x3update(x,b,l,g,pl,pm):
return pm(x - b, l*g, pl)
def update(func,item):
return map(func,[item])[0]
for k in range(MAX_ITER):
B = avg(X_1, X_2, X_3) - A/N + U
# Original MATLAB x-update
# X_1 = (1.0/(1.0+lambdap))*(X_1 - B)
# X_2 = prox_l1(X_2 - B, lambdap*g2)
# X_3 = prox_matrix(X_3 - B, lambdap*g3, prox_l1)
# Parallel x-update
async_X1 = pool.apply_async(update, (lambda x: x1update(x,B,lambdap), X_1))
async_X2 = pool.apply_async(update, (lambda x: x2update(x,B,lambdap,g2,prox_l1), X_2))
async_X3 = pool.apply_async(update, (lambda x: x3update(x,B,lambdap,g3,prox_l1,prox_matrix), X_3))
X_1 = async_X1.get()
X_2 = async_X2.get()
X_3 = async_X3.get()
# (for termination checks only)
x = hstack([X_1,X_2,X_3])
zold = z
z = x + tile(-avg(X_1, X_2, X_3) + A*1.0/N, (1, N))
# u-update
U = B
# diagnostics, reporting, termination checks
h['objval'][k] = objective(X_1, g2, X_2, g3, X_3)
h['r_norm'][k] = norm(x - z,'fro')
h['s_norm'][k] = norm(-rho*(z - zold),'fro');
h['eps_pri'][k] = sqrt(m*n*N)*ABSTOL + RELTOL*maximum(norm(x,'fro'), norm(-z,'fro'));
h['eps_dual'][k] = sqrt(m*n*N)*ABSTOL + RELTOL*sqrt(N)*norm(rho*U,'fro');
if (k == 0) or (mod(k+1,10) == 0):
print ('%4d\t%10.4f\t%10.4f\t%10.4f\t%10.4f\t%10.2f' %(k+1,
h['r_norm'][k],
h['eps_pri'][k],
h['s_norm'][k],
h['eps_dual'][k],
h['objval'][k]))
if (h['r_norm'][k] < h['eps_pri'][k]) and (h['s_norm'][k] < h['eps_dual'][k]):
break
h['addm_toc'] = time.time() - start
h['admm_iter'] = k
h['X1_admm'] = X_1
h['X2_admm'] = X_2
h['X3_admm'] = X_3
return h