-
Notifications
You must be signed in to change notification settings - Fork 2
/
vggish_rnn.py
170 lines (157 loc) · 7.22 KB
/
vggish_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function
import tensorflow as tf
import numpy as np
import librosa
import os
from model import vggish_rnn
# set CUDA visible devices
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
# set Flags
flags = tf.app.flags
# slim = tf.contrib.slim
flags.DEFINE_integer('num_batches', 100000, 'Number of batches of examples.')
flags.DEFINE_integer('batch_size', 32, 'Batch size')
flags.DEFINE_string('checkpoint', './checkpoint/vggish_rnn', 'Path to the VGGish checkpoint file.')
flags.DEFINE_string('audio_path', './audio_clips/','Path to audio path.')
flags.DEFINE_boolean('resume', False,'Resume from latest saved state.')
flags.DEFINE_string('audio_train_list', './lists/audio_train.txt', 'List of files for training')
flags.DEFINE_string('audio_val_list', './lists/audio_val.txt', 'List of files for training')
flags.DEFINE_float('learning_rate', 1e-4, 'Learning rate')
flags.DEFINE_string('gpu', '0', 'GPU to use')
FLAGS = flags.FLAGS
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
classes = {'background music': 0, 'speaking': 1, 'background laughing':2,
'crashing': 3, 'knocking': 4, 'opening/closing doors': 5,
'clapping': 6, 'shouting': 7, 'laughing': 8, 'door bell': 9}
num_classes = len(classes)
# Training Parameters
batch_size = FLAGS.batch_size
display_step = 20
# Optimizer Parameters
LEARNING_RATE = FLAGS.learning_rate # Learning rate for the Adam optimizer.
ADAM_EPSILON = 1e-8 # Epsilon for the Adam optimizer.
BETA1 = 0.9 # Beta 1
# Parameters of STFT
sr = 44100
hop_length = 1024
num_mel_bands = 96
n_fft = 2048
win_length = 1536
train_dicts = []
val_dicts = []
with open(FLAGS.audio_train_list, 'r') as f:
lines = f.readlines()
for l in lines:
[fname, _, _, cls] = l.strip().split('\t')
d = {}
d['file_name'] = fname
d['class'] = cls
d['labels'] = []
d['raw'], _ = librosa.load(os.path.join(FLAGS.audio_path, fname), sr=sr)
for c in cls.strip().split('|'):
d['labels'].append(classes[c])
train_dicts.append(d)
print('The train data has been loaded!')
with open(FLAGS.audio_val_list, 'r') as f:
lines = f.readlines()
for l in lines:
d = {}
[fname, _, _, cls] = l.strip().split('\t')
d['file_name'] = fname
d['class'] = cls
d['labels'] = []
d['raw'], _ = librosa.load(os.path.join(FLAGS.audio_path, fname), sr=sr)
for c in cls.strip().split('|'):
d['labels'].append(classes[c])
val_dicts.append(d)
print('The validation data has been loaded')
def _load_stft(data, n_fft=n_fft, hop_length=hop_length, win_length=win_length):
"""
Form a batch of training data to form x and y
Randomly sample a 1-sec clips from the audio clips and compute the stft
"""
num_sample_wav = 1
num_files = batch_size/num_sample_wav
choice = np.random.randint(0, len(data), (num_files))
data_list = [data[i] for i in choice]
nf = int(np.ceil(np.float(sr)/hop_length))
feat_example = np.zeros((batch_size, nf, n_fft/2+1, 1))
label_example = np.zeros((batch_size, len(classes)))
k = 0
for d in data_list:
raw = d['raw']
cls = d['labels']
if len(raw) - sr > 0:
sf = np.random.randint(0, len(raw)-sr, (num_sample_wav))
else:
sf = np.zeros((num_sample_wav), dtype=np.int)
for s in sf:
stft = librosa.core.stft(raw[s:s+sr], n_fft, hop_length, win_length)
feat_example[k,:,:,0] = np.abs(stft).T
label_example[k,cls] = 1
k += 1
return feat_example, label_example
# The data loader
loader = _load_stft
with tf.Graph().as_default(), tf.Session() as sess:
# tf Graph input
X = tf.placeholder("float", [batch_size, int(np.ceil(np.float(sr)/hop_length)), n_fft/2+1, 1], name='input_features')
Y = tf.placeholder("float", [batch_size, num_classes])
logits = vggish_rnn(X, num_classes=num_classes, state_size=128, batch_size=batch_size, batch_norm=True)
# Write the graph def:
tf.train.write_graph(sess.graph_def, FLAGS.checkpoint+'/model', 'graph.pbtxt', as_text=False)
print('The graph_def has been written!')
xent = tf.losses.log_loss(Y, logits)
loss_op = tf.reduce_mean(xent, name='loss_op')
with tf.variable_scope('train'):
global_step = tf.Variable(0, name='global_step', trainable=False,
collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP])
tf.summary.scalar('loss', loss_op)
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE,beta1=BETA1,epsilon=ADAM_EPSILON)
optimizer.minimize(loss_op, global_step=global_step,name='train_op')
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
global_step_tensor = sess.graph.get_tensor_by_name(
'train/global_step:0')
train_op = sess.graph.get_operation_by_name('train/train_op')
# saver
saver = tf.train.Saver(tf.global_variables())
# merge all the summaries and write them out to FLAGS.checkpoint
merged = tf.summary.merge_all()
summary_tr_writer = tf.summary.FileWriter(FLAGS.checkpoint + '/train', sess.graph)
summary_vd_writer = tf.summary.FileWriter(FLAGS.checkpoint + '/valid', sess.graph)
# resume the training
if FLAGS.resume:
latest = tf.train.latest_checkpoint(FLAGS.checkpoint + '/model')
if not latest:
print, "No checkpoint to continue from in", FLAGS.checkpoint
try:
os.stat(FLAGS.checkpoint + '/model')
except: os.mkdir(FLAGS.checkpoint + '/model')
print, "make model directory in " + FLAGS.checkpoint + '/model'
else:
print,"resume", latest
saver.restore(sess, latest)
# The training loop.
print('Ready to train sound detection algorithm using rnn....')
for step in range(FLAGS.num_batches):
if step % 50 == 0 or step == 1:
#batch_x, batch_y
batch_x, batch_y = loader(val_dicts)
# Run optimization op (backprop)
[summary, num_step, loss] = sess.run([merged,global_step_tensor, loss_op],
feed_dict={X: batch_x, Y: batch_y})
# write summary for validation
summary_vd_writer.add_summary(summary, num_step)
# save the trained model
checkpoint_path = os.path.join(FLAGS.checkpoint + '/model', 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=global_step_tensor)
else:
#batch_x, batch_y
batch_x, batch_y = loader(train_dicts)
# Run optimization op (backprop)
[summary, num_step, loss, _] = sess.run([merged,global_step_tensor, loss_op, train_op],
feed_dict={X: batch_x, Y: batch_y})
# write summary for validation
summary_tr_writer.add_summary(summary, num_step)
if step % display_step == 0 :
print('Step %d: loss %g' % (num_step, loss))