-
Notifications
You must be signed in to change notification settings - Fork 1
/
cq.c
422 lines (374 loc) · 12.6 KB
/
cq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/**********************************************************************
C Implementation of Wu's Color Quantizer (v. 2)
(see Graphics Gems vol. II, pp. 126-133)
Author: Xiaolin Wu
Dept. of Computer Science
Univ. of Western Ontario
London, Ontario N6A 5B7
wu@csd.uwo.ca
Algorithm: Greedy orthogonal bipartition of RGB space for variance
minimization aided by inclusion-exclusion tricks.
For speed no nearest neighbor search is done. Slightly
better performance can be expected by more sophisticated
but more expensive versions.
The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of
additional documentation and a cure to a previous bug.
Free to distribute, comments and suggestions are appreciated.
**********************************************************************/
#include "wuquant.h"
#include <stdio.h>
#include <stdlib.h>
#define MAXCOLOR 256
#define RED 2
#define GREEN 1
#define BLUE 0
struct box {
int r0; /* min value, exclusive */
int r1; /* max value, inclusive */
int g0;
int g1;
int b0;
int b1;
int vol;
};
static void
Hist3d(const unsigned char *imageData, unsigned int pixelCount, long int *vwt, long int *vmr, long int *vmg, long int *vmb, float *m2)
/* build 3-D color histogram of counts, r/g/b, c^2 */
{
register int ind, r, g, b;
int inr, ing, inb, table[256];
register long int i;
for(i=0; i<256; ++i) table[i]=i*i;
for(i=0; i<pixelCount; ++i){
r = imageData[i * 3 + 0];
g = imageData[i * 3 + 1];
b = imageData[i * 3 + 2];
inr=(r>>3)+1;
ing=(g>>3)+1;
inb=(b>>3)+1;
ind=(inr<<10)+(inr<<6)+inr+(ing<<5)+ing+inb;
/*[inr][ing][inb]*/
++vwt[ind];
vmr[ind] += r;
vmg[ind] += g;
vmb[ind] += b;
m2[ind] += (float)(table[r]+table[g]+table[b]);
}
}
/* At conclusion of the histogram step, we can interpret
* wt[r][g][b] = sum over voxel of P(c)
* mr[r][g][b] = sum over voxel of r*P(c) , similarly for mg, mb
* m2[r][g][b] = sum over voxel of c^2*P(c)
* Actually each of these should be divided by 'pixelCount' to give the usual
* interpretation of P() as ranging from 0 to 1, but we needn't do that here.
*/
/* We now convert histogram into moments so that we can rapidly calculate
* the sums of the above quantities over any desired box.
*/
static void
M3d(vwt, vmr, vmg, vmb, m2) /* compute cumulative moments. */
long int *vwt, *vmr, *vmg, *vmb;
float *m2;
{
register unsigned short int ind1, ind2;
register unsigned char i, r, g, b;
long int line, line_r, line_g, line_b,
area[33], area_r[33], area_g[33], area_b[33];
float line2, area2[33];
for(r=1; r<=32; ++r){
for(i=0; i<=32; ++i)
area2[i]=area[i]=area_r[i]=area_g[i]=area_b[i]=0;
for(g=1; g<=32; ++g){
line2 = line = line_r = line_g = line_b = 0;
for(b=1; b<=32; ++b){
ind1 = (r<<10) + (r<<6) + r + (g<<5) + g + b; /* [r][g][b] */
line += vwt[ind1];
line_r += vmr[ind1];
line_g += vmg[ind1];
line_b += vmb[ind1];
line2 += m2[ind1];
area[b] += line;
area_r[b] += line_r;
area_g[b] += line_g;
area_b[b] += line_b;
area2[b] += line2;
ind2 = ind1 - 1089; /* [r-1][g][b] */
vwt[ind1] = vwt[ind2] + area[b];
vmr[ind1] = vmr[ind2] + area_r[b];
vmg[ind1] = vmg[ind2] + area_g[b];
vmb[ind1] = vmb[ind2] + area_b[b];
m2[ind1] = m2[ind2] + area2[b];
}
}
}
}
static long int Vol(struct box *cube, long int *mmt)
/* Compute sum over a box of any given statistic */
{
return( mmt[cube->r1*33*33 + cube->g1*33 + cube->b1]
-mmt[cube->r1*33*33 + cube->g1*33 + cube->b0]
-mmt[cube->r1*33*33 + cube->g0*33 + cube->b1]
+mmt[cube->r1*33*33 + cube->g0*33 + cube->b0]
-mmt[cube->r0*33*33 + cube->g1*33 + cube->b1]
+mmt[cube->r0*33*33 + cube->g1*33 + cube->b0]
+mmt[cube->r0*33*33 + cube->g0*33 + cube->b1]
-mmt[cube->r0*33*33 + cube->g0*33 + cube->b0] );
}
/* The next two routines allow a slightly more efficient calculation
* of Vol() for a proposed subbox of a given box. The sum of Top()
* and Bottom() is the Vol() of a subbox split in the given direction
* and with the specified new upper bound.
*/
static long int Bottom(struct box *cube, unsigned char dir, long int *mmt)
/* Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1 */
/* (depending on dir) */
{
switch(dir){
case RED:
return( -mmt[cube->r0*33*33 + cube->g1*33 + cube->b1]
+mmt[cube->r0*33*33 + cube->g1*33 + cube->b0]
+mmt[cube->r0*33*33 + cube->g0*33 + cube->b1]
-mmt[cube->r0*33*33 + cube->g0*33 + cube->b0] );
break;
case GREEN:
return( -mmt[cube->r1*33*33 + cube->g0*33 + cube->b1]
+mmt[cube->r1*33*33 + cube->g0*33 + cube->b0]
+mmt[cube->r0*33*33 + cube->g0*33 + cube->b1]
-mmt[cube->r0*33*33 + cube->g0*33 + cube->b0] );
break;
case BLUE:
return( -mmt[cube->r1*33*33 + cube->g1*33 + cube->b0]
+mmt[cube->r1*33*33 + cube->g0*33 + cube->b0]
+mmt[cube->r0*33*33 + cube->g1*33 + cube->b0]
-mmt[cube->r0*33*33 + cube->g0*33 + cube->b0] );
break;
}
__builtin_unreachable();
}
static long int Top(struct box *cube, unsigned char dir, int pos, long int *mmt)
/* Compute remainder of Vol(cube, mmt), substituting pos for */
/* r1, g1, or b1 (depending on dir) */
{
switch(dir){
case RED:
return( mmt[pos*33*33 + cube->g1*33 + cube->b1]
-mmt[pos*33*33 + cube->g1*33 + cube->b0]
-mmt[pos*33*33 + cube->g0*33 + cube->b1]
+mmt[pos*33*33 + cube->g0*33 + cube->b0] );
break;
case GREEN:
return( mmt[cube->r1*33*33 + pos*33 + cube->b1]
-mmt[cube->r1*33*33 + pos*33 + cube->b0]
-mmt[cube->r0*33*33 + pos*33 + cube->b1]
+mmt[cube->r0*33*33 + pos*33 + cube->b0] );
break;
case BLUE:
return( mmt[cube->r1*33*33 + cube->g1*33 + pos]
-mmt[cube->r1*33*33 + cube->g0*33 + pos]
-mmt[cube->r0*33*33 + cube->g1*33 + pos]
+mmt[cube->r0*33*33 + cube->g0*33 + pos] );
break;
}
__builtin_unreachable();
}
static float Var(struct box *cube, float *m2, long int *wt, long int *mr, long int *mg, long int *mb)
/* Compute the weighted variance of a box */
/* NB: as with the raw statistics, this is really the variance * pixelCount */
{
float dr, dg, db, xx;
dr = Vol(cube, mr);
dg = Vol(cube, mg);
db = Vol(cube, mb);
xx = m2[cube->r1*33*33 + cube->g1*33 + cube->b1]
-m2[cube->r1*33*33 + cube->g1*33 + cube->b0]
-m2[cube->r1*33*33 + cube->g0*33 + cube->b1]
+m2[cube->r1*33*33 + cube->g0*33 + cube->b0]
-m2[cube->r0*33*33 + cube->g1*33 + cube->b1]
+m2[cube->r0*33*33 + cube->g1*33 + cube->b0]
+m2[cube->r0*33*33 + cube->g0*33 + cube->b1]
-m2[cube->r0*33*33 + cube->g0*33 + cube->b0];
return( xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,wt) );
}
/* We want to minimize the sum of the variances of two subboxes.
* The sum(c^2) terms can be ignored since their sum over both subboxes
* is the same (the sum for the whole box) no matter where we split.
* The remaining terms have a minus sign in the variance formula,
* so we drop the minus sign and MAXIMIZE the sum of the two terms.
*/
static float Maximize(struct box *cube, unsigned char dir, int first, int last, int *cut,
long int whole_r, long int whole_g, long int whole_b, long int whole_w,
long int *wt, long int *mr, long int *mg, long int *mb)
{
register long int half_r, half_g, half_b, half_w;
long int base_r, base_g, base_b, base_w;
register int i;
register float temp, max;
base_r = Bottom(cube, dir, mr);
base_g = Bottom(cube, dir, mg);
base_b = Bottom(cube, dir, mb);
base_w = Bottom(cube, dir, wt);
max = 0.0;
*cut = -1;
for(i=first; i<last; ++i){
half_r = base_r + Top(cube, dir, i, mr);
half_g = base_g + Top(cube, dir, i, mg);
half_b = base_b + Top(cube, dir, i, mb);
half_w = base_w + Top(cube, dir, i, wt);
/* now half_x is sum over lower half of box, if split at i */
if (half_w == 0) { /* subbox could be empty of pixels! */
continue; /* never split into an empty box */
} else
temp = ((float)half_r*half_r + (float)half_g*half_g +
(float)half_b*half_b)/half_w;
half_r = whole_r - half_r;
half_g = whole_g - half_g;
half_b = whole_b - half_b;
half_w = whole_w - half_w;
if (half_w == 0) { /* subbox could be empty of pixels! */
continue; /* never split into an empty box */
} else
temp += ((float)half_r*half_r + (float)half_g*half_g +
(float)half_b*half_b)/half_w;
if (temp > max) {max=temp; *cut=i;}
}
return(max);
}
static int
Cut(struct box *set1, struct box *set2, long int *wt, long int *mr, long int *mg, long int *mb)
{
unsigned char dir;
int cutr, cutg, cutb;
float maxr, maxg, maxb;
long int whole_r, whole_g, whole_b, whole_w;
whole_r = Vol(set1, mr);
whole_g = Vol(set1, mg);
whole_b = Vol(set1, mb);
whole_w = Vol(set1, wt);
maxr = Maximize(set1, RED, set1->r0+1, set1->r1, &cutr,
whole_r, whole_g, whole_b, whole_w,
wt, mr, mg, mb);
maxg = Maximize(set1, GREEN, set1->g0+1, set1->g1, &cutg,
whole_r, whole_g, whole_b, whole_w,
wt, mr, mg, mb);
maxb = Maximize(set1, BLUE, set1->b0+1, set1->b1, &cutb,
whole_r, whole_g, whole_b, whole_w,
wt, mr, mg, mb);
if( (maxr>=maxg)&&(maxr>=maxb) ) {
dir = RED;
if (cutr < 0) return 0; /* can't split the box */
}
else
if( (maxg>=maxr)&&(maxg>=maxb) )
dir = GREEN;
else
dir = BLUE;
set2->r1 = set1->r1;
set2->g1 = set1->g1;
set2->b1 = set1->b1;
switch (dir){
case RED:
set2->r0 = set1->r1 = cutr;
set2->g0 = set1->g0;
set2->b0 = set1->b0;
break;
case GREEN:
set2->g0 = set1->g1 = cutg;
set2->r0 = set1->r0;
set2->b0 = set1->b0;
break;
case BLUE:
set2->b0 = set1->b1 = cutb;
set2->r0 = set1->r0;
set2->g0 = set1->g0;
break;
}
set1->vol=(set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0);
set2->vol=(set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0);
return 1;
}
static void
Mark(cube, label, tag)
struct box *cube;
int label;
unsigned char *tag;
{
register int r, g, b;
for(r=cube->r0+1; r<=cube->r1; ++r)
for(g=cube->g0+1; g<=cube->g1; ++g)
for(b=cube->b0+1; b<=cube->b1; ++b)
tag[(r<<10) + (r<<6) + r + (g<<5) + g + b] = label;
}
bool wuquant(const unsigned char *imageData, unsigned int pixelCount, unsigned int targetColors, unsigned char *outputPalette)
{
struct box cube[MAXCOLOR];
unsigned char *tag;
int next;
register long int i, weight;
register int k;
float vv[MAXCOLOR], temp;
/* Histogram is in elements 1..HISTSIZE along each axis,
* element 0 is for base or marginal value
* NB: these must start out 0!
*/
float *m2 = calloc(33 * 33 * 33, sizeof(float));
long int *wt = calloc(33 * 33 * 33, sizeof(long int));
long int *mr = calloc(33 * 33 * 33, sizeof(long int));
long int *mg = calloc(33 * 33 * 33, sizeof(long int));
long int *mb = calloc(33 * 33 * 33, sizeof(long int));
if (!m2 || !wt || !mr || !mg || !mb)
{
fprintf(stderr, "[wuquant] error: out of memory\n");
return false;
}
Hist3d(imageData, pixelCount, wt, mr, mg, mb, m2);
M3d(wt, mr, mg, mb, m2);
cube[0].r0 = cube[0].g0 = cube[0].b0 = 0;
cube[0].r1 = cube[0].g1 = cube[0].b1 = 32;
next = 0;
for(i=1; i<targetColors; ++i){
if (Cut(&cube[next], &cube[i], wt, mr, mg, mb)) {
/* volume test ensures we won't try to cut one-cell box */
vv[next] = (cube[next].vol>1) ? Var(&cube[next], m2, wt, mr, mg, mb) : 0.0;
vv[i] = (cube[i].vol>1) ? Var(&cube[i], m2, wt, mr, mg, mb) : 0.0;
} else {
vv[next] = 0.0; /* don't try to split this box again */
i--; /* didn't create box i */
}
next = 0; temp = vv[0];
for(k=1; k<=i; ++k)
if (vv[k] > temp) {
temp = vv[k]; next = k;
}
if (temp <= 0.0) {
targetColors = i+1;
fprintf(stderr, "[wuquant] warning: only got %d boxes\n", targetColors);
break;
}
}
free(m2);
tag = (unsigned char *)malloc(33*33*33);
if (!tag)
{
fprintf(stderr, "[wuquant] error: out of memory\n");
return false;
}
for(k=0; k<targetColors; ++k){
Mark(&cube[k], k, tag);
weight = Vol(&cube[k], wt);
if (weight) {
outputPalette[k * 3 + 0] = Vol(&cube[k], mr) / weight;
outputPalette[k * 3 + 1] = Vol(&cube[k], mg) / weight;
outputPalette[k * 3 + 2] = Vol(&cube[k], mb) / weight;
}
else{
fprintf(stderr, "[wuquant] bogus box %d\n", k);
outputPalette[k * 3 + 0] = outputPalette[k * 3 + 1] = outputPalette[k * 3 + 2] = 0;
}
}
free(wt);
free(mr);
free(mg);
free(mb);
free(tag);
return true;
}