From 944750287d32f5c6686e2e3b9cc0bd0f55073c2b Mon Sep 17 00:00:00 2001 From: Naga Sai Abhinay Date: Mon, 6 Mar 2023 06:25:30 +0530 Subject: [PATCH] [Community Pipeline] Unclip Image Interpolation (#2400) * unclip img interpolation poc * Added code sample and refactoring. --- examples/community/README.md | 45 ++ .../community/unclip_image_interpolation.py | 493 ++++++++++++++++++ 2 files changed, 538 insertions(+) create mode 100644 examples/community/unclip_image_interpolation.py diff --git a/examples/community/README.md b/examples/community/README.md index 905f7b887b46f..1521f16bffaf2 100644 --- a/examples/community/README.md +++ b/examples/community/README.md @@ -28,6 +28,7 @@ Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Di MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) | | Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | - |[Ray Wang](https://wrong.wang) | | UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) | +| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) | @@ -989,3 +990,47 @@ The resulting images in order:- ![result_3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_3.png) ![result_4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_4.png) ![result_5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_5.png) + +### UnCLIP Image Interpolation Pipeline + +This Diffusion Pipeline takes two images or an image_embeddings tensor of size 2 and interpolates between their embeddings using spherical interpolation ( slerp ). The input images/image_embeddings are converted to image embeddings by the pipeline's image_encoder and the interpolation is done on the resulting image_embeddings over the number of steps specified. Defaults to 5 steps. + +```python +import torch +from diffusers import DiffusionPipeline +from PIL import Image + +device = torch.device("cpu" if not torch.cuda.is_available() else "cuda") +dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16 + +pipe = DiffusionPipeline.from_pretrained( + "kakaobrain/karlo-v1-alpha-image-variations", + torch_dtype=dtype, + custom_pipeline="unclip_image_interpolation" +) +pipe.to(device) + +images = [Image.open('./starry_night.jpg'), Image.open('./flowers.jpg')] +#For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths. +generator = torch.Generator(device=device).manual_seed(42) + +output = pipe(image = images ,steps = 6, generator = generator) + +for i,image in enumerate(output.images): + image.save('starry_to_flowers_%s.jpg' % i) +``` +The original images:- + +![starry](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_night.jpg) +![flowers](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/flowers.jpg) + +The resulting images in order:- + +![result0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_0.png) +![result1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_1.png) +![result2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_2.png) +![result3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_3.png) +![result4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_4.png) +![result5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_5.png) + + diff --git a/examples/community/unclip_image_interpolation.py b/examples/community/unclip_image_interpolation.py new file mode 100644 index 0000000000000..fc313acd07bd8 --- /dev/null +++ b/examples/community/unclip_image_interpolation.py @@ -0,0 +1,493 @@ +import inspect +from typing import List, Optional, Union + +import PIL +import torch +from torch.nn import functional as F +from transformers import ( + CLIPFeatureExtractor, + CLIPTextModelWithProjection, + CLIPTokenizer, + CLIPVisionModelWithProjection, +) + +from diffusers import ( + DiffusionPipeline, + ImagePipelineOutput, + UnCLIPScheduler, + UNet2DConditionModel, + UNet2DModel, +) +from diffusers.pipelines.unclip import UnCLIPTextProjModel +from diffusers.utils import is_accelerate_available, logging, randn_tensor + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +def slerp(val, low, high): + """ + Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. + """ + low_norm = low / torch.norm(low) + high_norm = high / torch.norm(high) + omega = torch.acos((low_norm * high_norm)) + so = torch.sin(omega) + res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high + return res + + +class UnCLIPImageInterpolationPipeline(DiffusionPipeline): + """ + Pipeline to generate variations from an input image using unCLIP + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + Args: + text_encoder ([`CLIPTextModelWithProjection`]): + Frozen text-encoder. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + feature_extractor ([`CLIPFeatureExtractor`]): + Model that extracts features from generated images to be used as inputs for the `image_encoder`. + image_encoder ([`CLIPVisionModelWithProjection`]): + Frozen CLIP image-encoder. unCLIP Image Variation uses the vision portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), + specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_proj ([`UnCLIPTextProjModel`]): + Utility class to prepare and combine the embeddings before they are passed to the decoder. + decoder ([`UNet2DConditionModel`]): + The decoder to invert the image embedding into an image. + super_res_first ([`UNet2DModel`]): + Super resolution unet. Used in all but the last step of the super resolution diffusion process. + super_res_last ([`UNet2DModel`]): + Super resolution unet. Used in the last step of the super resolution diffusion process. + decoder_scheduler ([`UnCLIPScheduler`]): + Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. + super_res_scheduler ([`UnCLIPScheduler`]): + Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. + + """ + + decoder: UNet2DConditionModel + text_proj: UnCLIPTextProjModel + text_encoder: CLIPTextModelWithProjection + tokenizer: CLIPTokenizer + feature_extractor: CLIPFeatureExtractor + image_encoder: CLIPVisionModelWithProjection + super_res_first: UNet2DModel + super_res_last: UNet2DModel + + decoder_scheduler: UnCLIPScheduler + super_res_scheduler: UnCLIPScheduler + + # Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline.__init__ + def __init__( + self, + decoder: UNet2DConditionModel, + text_encoder: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + text_proj: UnCLIPTextProjModel, + feature_extractor: CLIPFeatureExtractor, + image_encoder: CLIPVisionModelWithProjection, + super_res_first: UNet2DModel, + super_res_last: UNet2DModel, + decoder_scheduler: UnCLIPScheduler, + super_res_scheduler: UnCLIPScheduler, + ): + super().__init__() + + self.register_modules( + decoder=decoder, + text_encoder=text_encoder, + tokenizer=tokenizer, + text_proj=text_proj, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + super_res_first=super_res_first, + super_res_last=super_res_last, + decoder_scheduler=decoder_scheduler, + super_res_scheduler=super_res_scheduler, + ) + + # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents + def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + if latents.shape != shape: + raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") + latents = latents.to(device) + + latents = latents * scheduler.init_noise_sigma + return latents + + # Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline._encode_prompt + def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): + batch_size = len(prompt) if isinstance(prompt, list) else 1 + + # get prompt text embeddings + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + text_mask = text_inputs.attention_mask.bool().to(device) + text_encoder_output = self.text_encoder(text_input_ids.to(device)) + + prompt_embeds = text_encoder_output.text_embeds + text_encoder_hidden_states = text_encoder_output.last_hidden_state + + prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) + text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) + + if do_classifier_free_guidance: + uncond_tokens = [""] * batch_size + + max_length = text_input_ids.shape[-1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + uncond_text_mask = uncond_input.attention_mask.bool().to(device) + negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) + + negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds + uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state + + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) + + seq_len = uncond_text_encoder_hidden_states.shape[1] + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) + uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( + batch_size * num_images_per_prompt, seq_len, -1 + ) + uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) + + # done duplicates + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) + + text_mask = torch.cat([uncond_text_mask, text_mask]) + + return prompt_embeds, text_encoder_hidden_states, text_mask + + # Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline._encode_image + def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor] = None): + dtype = next(self.image_encoder.parameters()).dtype + + if image_embeddings is None: + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(images=image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + image_embeddings = self.image_encoder(image).image_embeds + + image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0) + + return image_embeddings + + # Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline.enable_sequential_cpu_offload + def enable_sequential_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's + models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only + when their specific submodule has its `forward` method called. + """ + if is_accelerate_available(): + from accelerate import cpu_offload + else: + raise ImportError("Please install accelerate via `pip install accelerate`") + + device = torch.device(f"cuda:{gpu_id}") + + models = [ + self.decoder, + self.text_proj, + self.text_encoder, + self.super_res_first, + self.super_res_last, + ] + for cpu_offloaded_model in models: + if cpu_offloaded_model is not None: + cpu_offload(cpu_offloaded_model, device) + + @property + # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._execution_device + def _execution_device(self): + r""" + Returns the device on which the pipeline's models will be executed. After calling + `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module + hooks. + """ + if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): + return self.device + for module in self.decoder.modules(): + if ( + hasattr(module, "_hf_hook") + and hasattr(module._hf_hook, "execution_device") + and module._hf_hook.execution_device is not None + ): + return torch.device(module._hf_hook.execution_device) + return self.device + + @torch.no_grad() + def __call__( + self, + image: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None, + steps: int = 5, + decoder_num_inference_steps: int = 25, + super_res_num_inference_steps: int = 7, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + image_embeddings: Optional[torch.Tensor] = None, + decoder_latents: Optional[torch.FloatTensor] = None, + super_res_latents: Optional[torch.FloatTensor] = None, + decoder_guidance_scale: float = 8.0, + output_type: Optional[str] = "pil", + return_dict: bool = True, + ): + """ + Function invoked when calling the pipeline for generation. + + Args: + image (`List[PIL.Image.Image]` or `torch.FloatTensor`): + The images to use for the image interpolation. Only accepts a list of two PIL Images or If you provide a tensor, it needs to comply with the + configuration of + [this](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) + `CLIPFeatureExtractor` while still having a shape of two in the 0th dimension. Can be left to `None` only when `image_embeddings` are passed. + steps (`int`, *optional*, defaults to 5): + The number of interpolation images to generate. + decoder_num_inference_steps (`int`, *optional*, defaults to 25): + The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality + image at the expense of slower inference. + super_res_num_inference_steps (`int`, *optional*, defaults to 7): + The number of denoising steps for super resolution. More denoising steps usually lead to a higher + quality image at the expense of slower inference. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + image_embeddings (`torch.Tensor`, *optional*): + Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings + can be passed for tasks like image interpolations. `image` can the be left to `None`. + decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*): + Pre-generated noisy latents to be used as inputs for the decoder. + super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*): + Pre-generated noisy latents to be used as inputs for the decoder. + decoder_guidance_scale (`float`, *optional*, defaults to 4.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. + """ + + batch_size = steps + + device = self._execution_device + + if isinstance(image, List): + if len(image) != 2: + raise AssertionError( + f"Expected 'image' List to be of size 2, but passed 'image' length is {len(image)}" + ) + elif not (isinstance(image[0], PIL.Image.Image) and isinstance(image[0], PIL.Image.Image)): + raise AssertionError( + f"Expected 'image' List to contain PIL.Image.Image, but passed 'image' contents are {type(image[0])} and {type(image[1])}" + ) + elif isinstance(image, torch.FloatTensor): + if image.shape[0] != 2: + raise AssertionError( + f"Expected 'image' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image' size is {image.shape[0]}" + ) + elif isinstance(image_embeddings, torch.Tensor): + if image_embeddings.shape[0] != 2: + raise AssertionError( + f"Expected 'image_embeddings' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image_embeddings' shape is {image_embeddings.shape[0]}" + ) + else: + raise AssertionError( + f"Expected 'image' or 'image_embeddings' to be not None with types List[PIL.Image] or Torch.FloatTensor respectively. Received {type(image)} and {type(image_embeddings)} repsectively" + ) + + original_image_embeddings = self._encode_image( + image=image, device=device, num_images_per_prompt=1, image_embeddings=image_embeddings + ) + + image_embeddings = [] + + for interp_step in torch.linspace(0, 1, steps): + temp_image_embeddings = slerp( + interp_step, original_image_embeddings[0], original_image_embeddings[1] + ).unsqueeze(0) + image_embeddings.append(temp_image_embeddings) + + image_embeddings = torch.cat(image_embeddings).to(device) + + do_classifier_free_guidance = decoder_guidance_scale > 1.0 + + prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( + prompt=["" for i in range(steps)], + device=device, + num_images_per_prompt=1, + do_classifier_free_guidance=do_classifier_free_guidance, + ) + + text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( + image_embeddings=image_embeddings, + prompt_embeds=prompt_embeds, + text_encoder_hidden_states=text_encoder_hidden_states, + do_classifier_free_guidance=do_classifier_free_guidance, + ) + + if device.type == "mps": + # HACK: MPS: There is a panic when padding bool tensors, + # so cast to int tensor for the pad and back to bool afterwards + text_mask = text_mask.type(torch.int) + decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) + decoder_text_mask = decoder_text_mask.type(torch.bool) + else: + decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) + + self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) + decoder_timesteps_tensor = self.decoder_scheduler.timesteps + + num_channels_latents = self.decoder.in_channels + height = self.decoder.sample_size + width = self.decoder.sample_size + + decoder_latents = self.prepare_latents( + (batch_size, num_channels_latents, height, width), + text_encoder_hidden_states.dtype, + device, + generator, + decoder_latents, + self.decoder_scheduler, + ) + + for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents + + noise_pred = self.decoder( + sample=latent_model_input, + timestep=t, + encoder_hidden_states=text_encoder_hidden_states, + class_labels=additive_clip_time_embeddings, + attention_mask=decoder_text_mask, + ).sample + + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) + noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) + noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) + noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) + + if i + 1 == decoder_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = decoder_timesteps_tensor[i + 1] + + # compute the previous noisy sample x_t -> x_t-1 + decoder_latents = self.decoder_scheduler.step( + noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator + ).prev_sample + + decoder_latents = decoder_latents.clamp(-1, 1) + + image_small = decoder_latents + + # done decoder + + # super res + + self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) + super_res_timesteps_tensor = self.super_res_scheduler.timesteps + + channels = self.super_res_first.in_channels // 2 + height = self.super_res_first.sample_size + width = self.super_res_first.sample_size + + super_res_latents = self.prepare_latents( + (batch_size, channels, height, width), + image_small.dtype, + device, + generator, + super_res_latents, + self.super_res_scheduler, + ) + + if device.type == "mps": + # MPS does not support many interpolations + image_upscaled = F.interpolate(image_small, size=[height, width]) + else: + interpolate_antialias = {} + if "antialias" in inspect.signature(F.interpolate).parameters: + interpolate_antialias["antialias"] = True + + image_upscaled = F.interpolate( + image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias + ) + + for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): + # no classifier free guidance + + if i == super_res_timesteps_tensor.shape[0] - 1: + unet = self.super_res_last + else: + unet = self.super_res_first + + latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) + + noise_pred = unet( + sample=latent_model_input, + timestep=t, + ).sample + + if i + 1 == super_res_timesteps_tensor.shape[0]: + prev_timestep = None + else: + prev_timestep = super_res_timesteps_tensor[i + 1] + + # compute the previous noisy sample x_t -> x_t-1 + super_res_latents = self.super_res_scheduler.step( + noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator + ).prev_sample + + image = super_res_latents + # done super res + + # post processing + + image = image * 0.5 + 0.5 + image = image.clamp(0, 1) + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + + if output_type == "pil": + image = self.numpy_to_pil(image) + + if not return_dict: + return (image,) + + return ImagePipelineOutput(images=image)