-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.rs
154 lines (117 loc) · 3.98 KB
/
linear_regression.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
extern crate rulinalg;
use rulinalg::matrix::{BaseMatrix, Matrix};
use model::SupervisedLearning;
pub struct LinearRegression {
pub input_dimension: usize,
pub weights: Option<Matrix<f64>>,
}
impl LinearRegression {
pub fn new(input_dimension: usize) -> LinearRegression {
LinearRegression {
input_dimension,
weights: None,
}
}
}
impl SupervisedLearning<Matrix<f64>, Matrix<f64>> for LinearRegression {
fn fit(&mut self, inputs: &Matrix<f64>, outputs: &Matrix<f64>) -> Result<(), ()> {
if inputs.cols() != self.input_dimension {
// TODO: return a specific error
return Err(());
}
// Add bias to inputs
let inputs: Matrix<f64> = Matrix::ones(inputs.rows(), 1).hcat(inputs);
let inputs_transposed = inputs.transpose();
// (((inputs_transposed * inputs) ^ -1) * inputs_transposed) * targets
let m1 = match (&inputs_transposed * &inputs).inverse() {
Ok(result) => result,
Err(_) => return Err(())
};
let m2 = m1 * &inputs_transposed;
let weights = m2 * outputs;
self.weights = Some(weights);
Ok(())
}
fn predict(&self, inputs: &Matrix<f64>) -> Result<Matrix<f64>, ()> {
if inputs.cols() != self.input_dimension {
return Err(());
}
// Add bias to inputs
let inputs: Matrix<f64> = Matrix::ones(inputs.rows(), 1).hcat(inputs);
match self.weights {
Some(ref weights) => Ok(inputs * weights),
None => Err(()),
}
}
}
#[test]
fn test_create_linear_regression() {
let model = LinearRegression::new(2);
assert_eq!(model.input_dimension, 2);
assert_eq!(model.weights, None);
}
#[test]
fn test_fit_linear_regression_model() {
let mut model = LinearRegression::new(1);
let inputs = Matrix::new(3, 1, vec![
0.0,
1.0,
2.0
]);
// targets are given by computing this value 3x + 2
let targets = Matrix::new(3, 1, vec![2.0, 5.0, 8.0]);
let fitting_result = model.fit(&inputs, &targets);
assert!(fitting_result.is_ok());
assert_ne!(model.weights, None);
let weights = model.weights.unwrap();
let w_1 = (weights.data()[0] - 2.0).abs();
let w_2 = (weights.data()[1] - 3.0).abs();
assert!(w_1 < 1e-8);
assert!(w_2 < 1e-8);
}
#[test]
fn test_fit_linear_regression_model_with_wrong_input_dimension() {
let mut model = LinearRegression::new(2);
let inputs = Matrix::new(3, 1, vec![
0.0,
1.0,
2.0
]); // <-- matrix should have two cols (corresponding to input_dimension of 2)
// targets are given by computing this value 3x + 2
let targets = Matrix::new(3, 1, vec![2.0, 5.0, 8.0]);
assert!(model.fit(&inputs, &targets).is_err());
}
#[test]
fn test_predict_linear_regression_model() {
let mut model = LinearRegression::new(1);
let inputs = Matrix::new(3, 1, vec![
0.0,
1.0,
2.0
]);
// targets are given by computing this value 3x + 2
let targets = Matrix::new(3, 1, vec![2.0, 5.0, 8.0]);
model.fit(&inputs, &targets).unwrap();
let result = model.predict(&Matrix::new(1, 1, vec![4.])).unwrap().into_vec();
assert_eq!(result, vec![14.]);
}
#[test]
fn test_predict_linear_regression_model_when_not_fitted() {
let model = LinearRegression::new(1);
let result = model.predict(&Matrix::new(1, 1, vec![4.]));
assert!(result.is_err());
}
#[test]
fn test_predict_linear_regression_model_with_wrong_input_dimension() {
let mut model = LinearRegression::new(1);
let inputs = Matrix::new(3, 1, vec![
0.0,
1.0,
2.0
]);
// targets are given by computing this value 3x + 2
let targets = Matrix::new(3, 1, vec![2.0, 5.0, 8.0]);
model.fit(&inputs, &targets).unwrap();
let result = model.predict(&Matrix::new(1, 2, vec![4., 3.])); // <-- here input_dimension equals 2 but model's input_dimension is 1
assert!(result.is_err());
}