-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCL_train_DwoPP.py
295 lines (237 loc) · 11.8 KB
/
CL_train_DwoPP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
'''
This file is our method. If all optional losses are set to 0, we have FT+.
'''
import copy
import torch
import torch.optim as optim
from torch.nn import DataParallel
import time
import numpy as np
import os
import time
import random
from model import resnet_model
from data.CL_loader import make_dataloader
from loss import make_loss
from config import get_parser
import pickle as pkl
from eval import eval
import torch.nn.functional as F
import utils
def init_seed(args, gids):
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
if gids is not None:
torch.cuda.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def make_model(args, gids=None):
model = resnet_model(remove_downsample=args.remove_downsample)
return model
def adjust_lr_exp(optimizer, base_lr, epoch, num_epochs, decay_start_epoch):
if epoch < 1:
raise Exception('Current epoch number should be no less than 1.')
if epoch < decay_start_epoch:
return
for g in optimizer.param_groups:
g['lr'] = base_lr * (0.005 ** (float(epoch + 1 - decay_start_epoch)
/ (num_epochs + 1 - decay_start_epoch)))
print('=====> lr adjusted to {:.9f}'.format(g['lr']).rstrip('0'))
def train(args, model, optimizer, criterion, task_id, gids=None, old_model=None):
model.train()
t0 = int(time.time())
for epoch in range(args.num_epochs):
train_loss = []
dmml_losses = []
know_distill_losses = []
if epoch % 10 == 0:
dataloader = make_dataloader(args, task_id, epoch)
print('=== Epoch {}/{} ==='.format(epoch, args.num_epochs))
adjust_lr_exp(optimizer, args.lr, epoch+1, args.num_epochs, args.lr_decay_start_epoch)
for iteration, (image, label) in enumerate(dataloader):
if args.cuda:
image, label = image.cuda(gids[0]), label.cuda(gids[0])
### feat is in fact feat_new_model
feat = model(image)
####### 1, dmml loss ##############
dmml_loss = criterion(feat, label)
####### 2, distillation ##############
if task_id > 0 and args.weight_knowledge_distill > 0:
feat_old_model=old_model(image)
####### with new model
reshape_feat_new_model=feat.reshape(-1,args.num_support+args.num_query,2048)
enc_data_query = reshape_feat_new_model[:, args.num_support:, :].squeeze(1)
if args.distillation_dist_metric=='euclidean':
enc_proto = reshape_feat_new_model[:,:args.num_support,:].mean(1)
mix_task_new_logits = utils.decode(enc_proto, enc_data_query)
elif args.distillation_dist_metric=='cosine':
enc_proto = F.normalize(reshape_feat_new_model[:,:args.num_support,:]).mean(1)
mix_task_new_logits = utils.cosine_decode(enc_proto, enc_data_query)
else:
raise NotImplementedError
if args.remove_positive_pair:
identity=torch.eye(len(mix_task_new_logits))
mix_task_new_logits = mix_task_new_logits[(1-identity).bool()]
mix_task_new_logits = mix_task_new_logits.reshape(len(identity),-1)
mix_task_new_logits = F.softmax(mix_task_new_logits,dim=1)
if args.temperature != 1.0:
eps=1e-5
T=args.temperature
mix_task_new_logits = F.normalize(mix_task_new_logits.pow(1/T), dim=1, p=1)
mix_task_new_logits = F.normalize(mix_task_new_logits + eps / mix_task_new_logits.size(1), dim=1, p=1)
####### with old model
reshape_feat_old_model = feat_old_model.reshape(-1, args.num_support + args.num_query, 2048)
enc_data_query = reshape_feat_old_model[:, args.num_support:, :].squeeze(1)
if args.distillation_dist_metric=='euclidean':
enc_proto = reshape_feat_old_model[:, :args.num_support, :].mean(1)
mix_task_old_logits = utils.decode(enc_proto, enc_data_query)
elif args.distillation_dist_metric=='cosine':
enc_proto = F.normalize(reshape_feat_old_model[:, :args.num_support, :]).mean(1)
mix_task_old_logits = utils.cosine_decode(enc_proto, enc_data_query)
else:
raise NotImplementedError
if args.remove_positive_pair:
identity = torch.eye(len(mix_task_old_logits))
mix_task_old_logits = mix_task_old_logits[(1-identity).bool()]
mix_task_old_logits = mix_task_old_logits.reshape(len(identity),-1)
mix_task_old_logits = F.softmax(mix_task_old_logits,dim=1)
if args.temperature != 1.0:
eps=1e-5
T=args.temperature
mix_task_old_logits = F.normalize(mix_task_old_logits.pow(1/T), dim=1, p=1)
mix_task_old_logits = F.normalize(mix_task_old_logits + eps / mix_task_old_logits.size(1), dim=1, p=1)
kl_div_mix_task = (mix_task_old_logits.clamp(min=1e-4) * (mix_task_old_logits.clamp(min=1e-4)
/ mix_task_new_logits.clamp(min=1e-4)).log()).sum() / len(mix_task_old_logits)
kl_div_mix_task= kl_div_mix_task * args.weight_knowledge_distill
else:
kl_div_mix_task=torch.tensor(0).cuda(gids[0])
#################################################
loss = dmml_loss + kl_div_mix_task
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print training info
train_loss.append(loss.item())
dmml_losses.append(dmml_loss.item())
know_distill_losses.append(kl_div_mix_task.item())
print('Episode: {}, Loss: {:.6f}, dmml_loss: {:.6f}, kl_div_mix_task: {:.6f} '
.format(iteration, loss.item(), dmml_loss.item(), kl_div_mix_task.item()))
avg_training_loss = np.mean(train_loss)
avg_dmml_losses = np.mean(dmml_losses)
avg_know_distill_losses = np.mean(know_distill_losses)
print('Average loss: {:.6f},dmml_losses: {:.6f}, know_distill_losses: {:.6f}'
.format(avg_training_loss,avg_dmml_losses, avg_know_distill_losses))
t = int(time.time())
print('Time elapsed: {}h {}m'.format((t - t0) // 3600, ((t - t0) % 3600) // 60))
model_save_path = os.path.join(args.exp_root, args.method,
'{}_model_last_task_{}.pth'.format(args.method, task_id))
if gids is not None and len(gids) > 1:
torch.save(model.module.state_dict(), model_save_path)
else:
torch.save(model.state_dict(), model_save_path)
print('Final model saved.')
mAP, CMC=eval(gid=gids[0], dataset=args.dataset, dataset_root=args.dataset_root, which='last',
exp_dir=os.path.join(args.exp_root, args.method),method=args.method, task_id=task_id)
return mAP, CMC[0].item()
def main():
args = get_parser().parse_args()
if not os.path.exists(args.exp_root):
os.makedirs(args.exp_root)
if torch.cuda.is_available() and not args.cuda:
print("\nStrongly recommend to run with '--cuda' if you have a device with CUDA support.")
# print configs
print('='*40)
print('Dataset: {}'.format(args.dataset))
print('Model: ResNet-50')
print('Optimizer: Adam')
print('Image height: {}'.format(args.img_height))
print('Image width: {}'.format(args.img_width))
print('Loss: {}'.format(args.loss_type))
if args.loss_type in ['dmml']:
print(' margin: {}'.format(args.margin))
print(' class number: {}'.format(args.num_classes))
if args.loss_type == 'dmml':
print(' support number: {}'.format(args.num_support))
print(' query number: {}'.format(args.num_query))
print(' distance_mode: {}'.format(args.distance_mode))
else:
print(' instance number: {}'.format(args.num_instances))
print('Epochs: {}'.format(args.num_epochs))
print('Learning rate: {}'.format(args.lr))
print(' decay beginning epoch: {}'.format(args.lr_decay_start_epoch))
print('Weight decay: {}'.format(args.weight_decay))
if args.cuda:
print('GPU(s): {}'.format(args.gpu))
print('='*40)
##############Initialization
print('Initializing...')
if args.cuda:
gpus = ''.join(args.gpu.split())
gids = [int(gid) for gid in gpus.split(',')]
else:
gids = None
############## if seed is not given, randomly generate a seed
if args.manual_seed == None:
args.manual_seed=int(time.time())
args.manual_seed=int(args.manual_seed)
init_seed(args, gids)
print(f'seed is set to {args.manual_seed}.')
################################
if not os.path.exists(os.path.join('./result', args.dataset)):
os.makedirs(os.path.join('./result', args.dataset))
text_file = os.path.join('./result', args.dataset, args.method + '.txt')
f = open(text_file, 'a')
print(args,file=f)
f.close()
########### Training ###########
if not os.path.exists( os.path.join(args.exp_root, args.method)):
os.makedirs( os.path.join(args.exp_root, args.method))
if args.dataset=='market1501':
TOTAL_TASK_NUM=751
BASE_CLS_NUM = 76
TASK_NUM = 10
else:
raise NotImplementedError
CLS_NUM_PER_TASK = (TOTAL_TASK_NUM - BASE_CLS_NUM) // (TASK_NUM - 1)
args.classes_per_task = CLS_NUM_PER_TASK
for task_id in range(args.start_task_id,TASK_NUM):
model = make_model(args, gids)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
criterion = make_loss(args, gids)
if task_id>0:
############ load checkpoint and copy old model
model.to('cpu')
model_save_path = os.path.join(args.exp_root, args.method,
'{}_model_last_task_{}.pth'.format(args.method, task_id - 1))
print('load ckpt from {}'.format(model_save_path))
model.load_state_dict(torch.load(model_save_path, map_location='cpu'))
if gids is not None:
model = model.cuda(gids[0])
if len(gids) > 1:
model = DataParallel(model, gids)
old_model = copy.deepcopy(model)
for name,para in old_model.named_parameters():
para.requires_grad = False
old_model.eval()
print('load ckpt done!')
if not os.path.exists(os.path.join(args.exp_root, args.method)):
os.makedirs(os.path.join(args.exp_root, args.method))
print(f'Starting training {task_id} ...')
mAP, Rank_1 = train(args, model, optimizer, criterion, task_id, gids, old_model=old_model)
else:
if gids is not None:
model = model.cuda(gids[0])
if len(gids) > 1:
model = DataParallel(model, gids)
mAP, Rank_1 = train(args, model, optimizer, criterion, task_id, gids)
print('After learning TASK {}, the mAP is {:.4f} and Rank-1 is {:.4f}'.format(task_id, mAP, Rank_1))
text_file = os.path.join('./result', args.dataset, args.method + '.txt')
f = open(text_file, 'a')
print('task_id {}, {:.4f}, {:.4f}'.format(task_id, mAP, Rank_1),file=f)
print('write to file done!')
f.close()
print(f'Training {task_id} completed.')
if __name__ == '__main__':
main()