-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim_schedule.py
35 lines (26 loc) · 1.04 KB
/
optim_schedule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
'''A wrapper class for optimizer '''
import numpy as np
class ScheduledOptim():
'''A simple wrapper class for learning rate scheduling'''
def __init__(self, optimizer, d_model, n_warmup_steps):
self._optimizer = optimizer
self.n_warmup_steps = n_warmup_steps
self.n_current_steps = 0
self.init_lr = np.power(d_model, -0.5)
def step_and_update_lr(self):
"Step with the inner optimizer"
self._update_learning_rate()
self._optimizer.step()
def zero_grad(self):
"Zero out the gradients by the inner optimizer"
self._optimizer.zero_grad()
def _get_lr_scale(self):
return np.min([
np.power(self.n_current_steps, -0.5),
np.power(self.n_warmup_steps, -1.5) * self.n_current_steps])
def _update_learning_rate(self):
''' Learning rate scheduling per step '''
self.n_current_steps += 1
lr = self.init_lr * self._get_lr_scale()
for param_group in self._optimizer.param_groups:
param_group['lr'] = lr