forked from RyanRuihanG/realtime_lane_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_detection.py
executable file
·229 lines (185 loc) · 8.65 KB
/
lane_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
import cv2
import time
from threading import Thread
from Queue import Queue
# defualt video number, if you want to process the "fog_video.mp4", change video_index to 1
video_index = 0
# the result of lane detection, we add the road to the main frame
road = np.zeros((720, 1280, 3))
# A flag which means the process is started
started = 0
# Pipeline combining color and gradient thresholding
def thresholding_pipeline(img, s_thresh=(90, 255), sxy_thresh=(20, 100)):
img = np.copy(img)
# 1: Convert to HSV color space and separate the V channel
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float)
h_channel = hls[:, :, 0]
l_channel = hls[:, :, 1]
s_channel = hls[:, :, 2]
# 2: Calculate x directional gradient
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal
scaled_sobelx = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
sxbinary = np.zeros_like(scaled_sobelx)
sxbinary[(scaled_sobelx >= sxy_thresh[0]) & (scaled_sobelx <= sxy_thresh[1])] = 1
grad_thresh = sxbinary
# 3: Color Threshold of s channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
# 4: Combine the two binary thresholds
combined_binary = np.zeros_like(grad_thresh)
combined_binary[(s_binary == 1) | (grad_thresh == 1)] = 1
return combined_binary
# Apply perspective transformation to bird's eye view
def perspective_transform(img, src_mask, dst_mask):
img_size = (img.shape[1], img.shape[0])
src = np.float32(src_mask)
dst = np.float32(dst_mask)
M = cv2.getPerspectiveTransform(src, dst)
warped_img = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR)
return warped_img
# Implement Sliding Windows and Fit a Polynomial
def sliding_windows(binary_warped, nwindows=9):
histogram = np.sum(binary_warped[int(binary_warped.shape[0]/2):, :], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit, lefty, leftx, righty, rightx
# Warp lane line projection back to original image
def project_lanelines(binary_warped, orig_img, left_fit, right_fit, dst_mask, src_mask):
global road
global started
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
warped_inv = perspective_transform(color_warp, dst_mask, src_mask)
road = warped_inv
started = 1
# Main process functions
def main_pipeline(input):
# step 1 select the ROI, and we need to distort the image for fog_video
if video_index == 0:
image = input
top_left = [540, 460]
top_right = [754, 460]
bottom_right = [1190, 670]
bottom_left = [160, 670]
else:
mtx = np.array([[1.15396467e+03, 0.00000000e+00, 6.69708251e+02],[0.00000000e+00, 1.14802823e+03, 3.85661017e+02],
[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
dist = np.array([[-2.41026561e-01, -5.30262184e-02, -1.15775369e-03, -1.27924043e-04, 2.66417032e-02]])
image = cv2.undistort(input, mtx, dist, None, mtx)
top_left = [240, 270]
top_right = [385, 270]
bottom_right = [685, 402]
bottom_left = [0, 402]
src_mask = np.array([[(top_left[0], top_left[1]), (top_right[0], top_right[1]),
(bottom_right[0], bottom_right[1]), (bottom_left[0], bottom_left[1])]], np.int32)
dst_mask = np.array([[(bottom_left[0], 0), (bottom_right[0], 0),
(bottom_right[0], bottom_right[1]), (bottom_left[0], bottom_left[1])]], np.int32)
# Step 2 Thresholding: color and gradient thresholds to generate a binary image
binary_image = thresholding_pipeline(image, s_thresh=(90, 255))
# Step 3 Perspective transform on binary image:
binary_warped = perspective_transform(binary_image, src_mask, dst_mask)
# Step 4 Fit Polynomial
left_fit, right_fit, lefty, leftx, righty, rightx = sliding_windows(binary_warped, nwindows=9)
# Step 5 Project Lines
project_lanelines(binary_warped, image, left_fit, right_fit, dst_mask, src_mask)
if __name__ == '__main__':
frames_counts = 1
if video_index == 0:
cap=cv2.VideoCapture('project_video.mp4')
else:
cap=cv2.VideoCapture('fog_video.mp4')
class MyThread(Thread):
def __init__(self, q):
Thread.__init__(self)
self.q = q
def run(self):
while(1):
if (not self.q.empty()):
image = self.q.get()
main_pipeline(image)
q = Queue()
q.queue.clear()
thd1 = MyThread(q)
thd1.setDaemon(True)
thd1.start()
while (True):
start=time.time()
ret,frame=cap.read()
# Detect the lane every 5 frames
if frames_counts % 5 == 0:
q.put(frame)
# Add the lane image on the original frame if started
if started:
frame = cv2.addWeighted(frame, 1, road, 0.5, 0)
cv2.imshow("RealTime_lane_detection",frame)
if cv2.waitKey(1)&0xFF==ord('q'):
break
frames_counts+=1
cv2.waitKey(12)
finish=time.time()
print 'FPS: ' + str(int(1/(finish-start)))
cap.release()
cv2.destroyAllWindows()