Skip to content

weblyzard/figue

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

figue

This project provides a collection of clustering algorithms implemented in Javascript and open sourced under the MIT licence. The current version supports k-means, fuzzy c-means and agglomerative clustering and provides functions to visualize clustering output (e.g. dendograms).

figue has been successfully tested on IE, Firefox, Chrome and Safari.

Here is an interactive demo of figue.

Using figue

You can copy figue.js file to your project or install it using bower (recommended):

bower install figue -S

In order to use figue in your project simply link to it in the head section of your HTML page, e.g.:

<head>
<script type="text/javascript" src="figue.js"></script>
</head>

You can also use tools like wiredep, and if using build tools like grunt you can automate it with plugins like grunt-wiredep.

K-means

K-means is one of the most famous clustering algorithm. It is useful to cluster data when the number of clusters is known apriori.

The following code shows how to cluster data into 4 clusters with k-means using figue:

  // Data source: LinkedIn
  // Initial data are businesses that need to be clustered according to their size (nb of employees) and revenue (in mln$)

  var data = [ 
      {'company': 'Microsoft' , 'size': 91259, 'revenue': 60420},
      {'company': 'IBM' , 'size': 400000, 'revenue': 98787},
      {'company': 'Skype' , 'size': 700, 'revenue': 716},
      {'company': 'SAP' , 'size': 48000, 'revenue': 11567},
      {'company': 'Yahoo!' , 'size': 14000 , 'revenue': 6426 },
      {'company': 'eBay' , 'size': 15000, 'revenue': 8700},
   ] ;

  // Create the labels and the vectors describing the data

  var labels = new Array ;
  var vectors = new Array ;
  for (var i = 0 ; i < data.length ; i++) {
      labels[i] = data[i]['company'] ;
      vectors[i] = [ data[i]['size'] , data[i]['revenue']] ;
  }

  var clusters = figue.kmeans(4, vectors) ;

The kmeans function takes as input the number K of clusters and a list of N input vectors and it outputs an object with two attributes:

  • centroids: an Array of K vectors containing the centroid of each cluster
  • assignments: An Array of size N representing for each input vector the index of the cluster

The kmeans function will return null if:

  • N < K
  • The number of different input vectors is smaller than K

Full example

The following example cluster data into 4 classes and display the assignments.

<html>
<head>

<script type="text/javascript" src="figue.js"></script>

<script type="text/javascript">

function load() {

  // Data source: LinkedIn
  // Initial data are businesses that need to be clustered according to their size (nb of employees) and revenue (in mln$)

  var data = [ 
      {'company': 'Microsoft' , 'size': 91259, 'revenue': 60420},
      {'company': 'IBM' , 'size': 400000, 'revenue': 98787},
      {'company': 'Skype' , 'size': 700, 'revenue': 716},
      {'company': 'SAP' , 'size': 48000, 'revenue': 11567},
      {'company': 'Yahoo!' , 'size': 14000 , 'revenue': 6426 },
      {'company': 'eBay' , 'size': 15000, 'revenue': 8700},
   ] ;

  // Create the labels and the vectors describing the data

  var labels = new Array ;
  var vectors = new Array ;
  for (var i = 0 ; i < data.length ; i++) {
      labels[i] = data[i]['company'] ;
      vectors[i] = [ data[i]['size'] , data[i]['revenue']] ;
  }

  var clusters = figue.kmeans(4, vectors) ;

  var txt ;
  if (clusters) {
    txt = "<table border='1'>" ;
    txt += "<tr><th>Label</th><th>Vector</th><th>Cluster id</th><th>Cluster centroid</th</tr>";

    for (var i = 0 ; i < vectors.length ; i++) {
      var index = clusters.assignments[i] ;
      txt += "<tr><td>" + labels[i] + "</td><td>" + vectors[i] + "</td><td>" + index + "</td><td>" + clusters.centroids[index] + "</td></tr>";
    }
    txt += "</table>"
  } else 
    txt = "No result (too many clusters/too few different instances (try changing K)" ;
  
  document.getElementById('mypre').innerHTML = txt; 

}

</script>

<body onload="load();">

<pre id="mypre"></pre>

</body>
</html>

The previous code will display a page showing the following table (note: values may be different depending on the choice of initial centroids):

Label Vector Cluster id Cluster centroid
Microsoft 91259,60420 1 91259,60420
IBM 400000,98787 2 400000,98787
Skype 700,716 3 9900,5280.666666666666
SAP 48000,11567 0 48000,11567
Yahoo! 14000,6426 3 9900,5280.666666666666
eBay 15000,8700 3 9900,5280.666666666666

Hierarchical Clustering

Hierarchical clustering is useful to cluster data without knowing apriori the number of clusters or just in order to visualize the distance relationships between data items.

The following code shows how to generate a hierarchical cluster using figue:

  // Data source: LinkedIn
  // Initial data are businesses that need to be clustered according to their size (nb of employees) and revenue (in mln$)

  var data = [ 
      {'company': 'Microsoft' , 'size': 91259, 'revenue': 60420},
      {'company': 'IBM' , 'size': 400000, 'revenue': 98787},
      {'company': 'Skype' , 'size': 700, 'revenue': 716},
      {'company': 'SAP' , 'size': 48000, 'revenue': 11567},
      {'company': 'Yahoo!' , 'size': 14000 , 'revenue': 6426 },
      {'company': 'eBay' , 'size': 15000, 'revenue': 8700},
   ] ;

  // Create the labels and the vectors describing the data

  var labels = new Array ;
  var vectors = new Array ;
  for (var i = 0 ; i < data.length ; i++) {
      labels[i] = data[i]['company'] ;
      vectors[i] = [ data[i]['size'] , data[i]['revenue']] ;
  }


  var root = figue.agglomerate(labels, vectors , figue.EUCLIDIAN_DISTANCE,figue.SINGLE_LINKAGE) ;

Figue can generate hierarchical clusters using the following linkage techniques:

  • single-linkage (figue.SINGLE_LINKAGE)
  • complete-linkage (figue.COMPLETE_LINKAGE)
  • average linkage (figue.AVERAGE_LINKAGE)

Three different types of distances are also supported:

  • Euclidian (figue.EUCLIDIAN_DISTANCE)
  • Max (figue.MAX_DISTANCE)
  • Manhattan (figue.MANHATTAN_DISTANCE)

For more information about hierarchical clustering please refer to Wikipedia.

Dendograms

Figue can generate graphical representations of hierarchical clusters by means of dendograms such as this one:

                                               |               
                                  ___________________________  
                                  |                         |  
                    _____________________________           |  
                    |                           |           |  
        _________________________               |           |  
        |                       |               |           |  
 ______________            ___________          |           |  
 |            |            |         |          |           |  
anna       stephany       tom       marc       john       karin

Currently the dendogram can be customized to:

  • control the minimum spacing between nodes
  • be balanced (i.e. all leaves at the same level)
  • display data labels
  • display cluster centroids
  • display distance between centroids

The buildDendogram function to produce dendograms is a method that is must be called by the root node, e.g.

root.buildDendogram (5, true, true, true, false) ;

This example will produce a dendogram:

  • with minimum spacing between nodes: 5 (i.e. 5 blank characters)
  • balanced
  • showing cluster labels
  • showing cluster centroids
  • not showing distance between clusters

Full example

The following example hierarchically cluster data and display the corresponding dendogram.

<html>
<head>

<script type="text/javascript" src="figue.js"></script>

<script type="text/javascript">

function load() {

  // Data source: LinkedIn
  // Initial data are businesses that need to be clustered according to their size (nb of employees) and revenue (in mln$)

  var data = [ 
      {'company': 'Microsoft' , 'size': 91259, 'revenue': 60420},
      {'company': 'IBM' , 'size': 400000, 'revenue': 98787},
      {'company': 'Skype' , 'size': 700, 'revenue': 716},
      {'company': 'SAP' , 'size': 48000, 'revenue': 11567},
      {'company': 'Yahoo!' , 'size': 14000 , 'revenue': 6426 },
      {'company': 'eBay' , 'size': 15000, 'revenue': 8700},
   ] ;

  // Create the labels and the vectors describing the data

  var labels = new Array ;
  var vectors = new Array ;
  for (var i = 0 ; i < data.length ; i++) {
      labels[i] = data[i]['company'] ;
      vectors[i] = [ data[i]['size'] , data[i]['revenue']] ;
  }


  var root = figue.agglomerate(labels, vectors , figue.EUCLIDIAN_DISTANCE,figue.SINGLE_LINKAGE) ;

  var dendogram = root.buildDendogram (5, true, true, true, false) ;

  // Render the dendogram in the page (note: pre is handled differently by IE and the rest of the browsers)
  var pre = document.getElementById('mypre') ;
  if( document.all ) { pre.innerText = dendogram ; } else { pre.innerHTML = dendogram ; }
}

</script>

<body onload="load();">

<pre id="mypre"></pre>

</body>
</html>

The previous code will display a page showing this dendogram:

                                                           |                                    
                                                   94826.5,31102.67                             
                             _____________________________________________________________      
                             |                                                           |      
                      33791.8,17565.8                                                    |      
     ________________________________________________                                    |      
     |                                              |                                    |      
     |                                        19425,6852.25                              |      
     |                           _______________________________________                 |      
     |                           |                                     |                 |      
     |                     9900,5280.67                                |                 |      
     |               _________________________                         |                 |      
     |               |                       |                         |                 |      
     |               |                  14500,7563                     |                 |      
     |               |              __________________                 |                 |      
     |               |              |                |                 |                 |      
91259,60420       700,716       14000,6426       15000,8700       48000,11567       400000,98787
 Microsoft         Skype          Yahoo             eBay              SAP               IBM     

Fuzzy C-means

The function for calculating fuzzy clusters and instances assignments has recently been added and will be documented soon.

TODO

  • In demo.html add function to randomly generate DS of any size
  • In README.md include results of a scalability analysis
  • rewrite demo.html using jquery

About

A Collection of Clustering Algorithms Implemented in Javascript

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 63.5%
  • HTML 36.5%