diff --git a/scripts/configs/pizeoelectric.yaml b/scripts/configs/pizeoelectric.yaml deleted file mode 100644 index ebae2c0..0000000 --- a/scripts/configs/pizeoelectric.yaml +++ /dev/null @@ -1,116 +0,0 @@ -seed_everything: 35 -log_level: info - -data: - root: . - tensor_target_name: piezoelectric_tensor_total - tensor_target_formula: ijk=ikj - trainset_filename: /Users/mjwen.admin/Documents/Dataset/di_pizeoelectric_tensor/piezoelectric_tensors_n20.json - valset_filename: /Users/mjwen.admin/Documents/Dataset/di_pizeoelectric_tensor/piezoelectric_tensors_n20.json - testset_filename: /Users/mjwen.admin/Documents/Dataset/di_pizeoelectric_tensor/piezoelectric_tensors_n20.json - r_cut: 5.0 - reuse: false - loader_kwargs: - batch_size: 32 - shuffle: true - -model: - ########## - # embedding - ########## - - # atom species embedding - species_embedding_dim: 16 - - # spherical harmonics embedding of edge direction - irreps_edge_sh: 0e + 1o + 2e + 3o - - # radial edge distance embedding - radial_basis_type: bessel - num_radial_basis: 8 - radial_basis_start: 0. - radial_basis_end: 5. - - ########## - # message passing conv layers - ########## - num_layers: 3 - - # radial network - invariant_layers: 2 # number of radial layers - invariant_neurons: 32 # number of hidden neurons in radial function - - # Average number of neighbors used for normalization. Options: - # 1. `auto` to determine it automatically, by setting it to average number - # of neighbors of the training set - # 2. float or int provided here. - # 3. `null` to not use it - average_num_neighbors: auto - - # point convolution - conv_layer_irreps: 32x0o+32x0e + 16x1o+16x1e + 4x2o+4x2e + 2x3o+2x3e - nonlinearity_type: gate - normalization: batch - resnet: true - - ########## - # output - ########## - - conv_to_output_hidden_irreps_out: 16x1o + 4x2o + 2x3o - - # output_format and output_formula should be used together. - # - output_format (can be `irreps` or `cartesian`) determines what the loss - # function will be on (either on the irreps space or the cartesian space). - # - output_formula gives what the cartesian formula of the tensor is. - # For example, ijkl=jikl=klij specifies a forth-rank elasticity tensor. - output_format: irreps - output_formula: ijk=ikj - - # pooling node feats to graph feats - reduce: mean - -trainer: - max_epochs: 10 # number of maximum training epochs - num_nodes: 1 - accelerator: cpu - devices: 1 - - callbacks: - - class_path: pytorch_lightning.callbacks.ModelCheckpoint - init_args: - monitor: val/score - mode: min - save_top_k: 3 - save_last: true - verbose: false - - class_path: pytorch_lightning.callbacks.EarlyStopping - init_args: - monitor: val/score - mode: min - patience: 150 - min_delta: 0 - verbose: true - - class_path: pytorch_lightning.callbacks.ModelSummary - init_args: - max_depth: -1 - - #logger: - # class_path: pytorch_lightning.loggers.wandb.WandbLogger - # init_args: - # save_dir: matten_logs - # project: matten_proj - -optimizer: - class_path: torch.optim.Adam - init_args: - lr: 0.01 - weight_decay: 0.00001 - -lr_scheduler: - class_path: torch.optim.lr_scheduler.ReduceLROnPlateau - init_args: - mode: min - factor: 0.5 - patience: 50 - verbose: true