-
Notifications
You must be signed in to change notification settings - Fork 25
/
evaluate_script.py
91 lines (69 loc) · 2.58 KB
/
evaluate_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import json
import re
import collections
import string
import sys
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
return re.sub(regex, " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(examples, reference):
"""
Computes the exact and f1 scores from the examples and the model predictions
"""
exact_scores = {}
f1_scores = {}
for example in examples:
qas_id = example['question_id']
gold_answers = [reference['reference'][qas_id]]
prediction = example['pred']
exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers)
f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers)
qid_list = reference['reference'].keys()
total = len(qid_list)
for k in qid_list:
if k not in exact_scores:
print("WARNING: MISSING QUESTION {}".format(k))
qid_list = list(set(qid_list) & set(exact_scores.keys()))
return collections.OrderedDict(
[
("total exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total),
("total f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total),
("total", total),
]
)
assert len(sys.argv) == 3, "you need to input the file"
with open(sys.argv[1], 'r') as f:
data = json.load(f)
with open(sys.argv[2], 'r') as f:
ref = json.load(f)
print(get_raw_scores(data, ref))