-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaselines.py
62 lines (48 loc) · 1.67 KB
/
baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import utils
import sys
'''
Baseline models
Usage:
python baselines.py random_forest
or
python baselines.py predict_mean
etc
'''
method = sys.argv[1]
def predict_mean():
print('Loading data...')
_, _, y_train, y_test, _ = utils.load_hand_data_cv()
y_predict = np.mean(y_train)
utils.compute_metrics(y_test, y_predict, print_them=True)
def no_change():
# assume v_(t+1) = v_t
print('Loading data...')
_, _, _, y_test, _ = utils.load_hand_data_cv()
y_predict = [0]*len(y_test)
utils.compute_metrics(y_test, y_predict, print_them=True)
def linear():
from sklearn.linear_model import LinearRegression
print('Loading data...')
x_train, x_test, y_train, y_test, _ = utils.load_hand_data_cv()
model = LinearRegression()
print('Fitting model...')
model.fit(x_train, y_train)
utils.compute_metrics(y_test, model.predict(x_test), print_them=True)
def lasso():
from sklearn.linear_model import LassoCV
print('Loading data...')
x_train, x_test, y_train, y_test, _ = utils.load_hand_data_cv()
print('Fitting model...')
model = LassoCV(cv=5, random_state=0, max_iter=2000)
model.fit(x_train, y_train)
utils.compute_metrics(y_test, model.predict(x_test), print_them=True)
def random_forest():
from sklearn.ensemble import RandomForestRegressor
print('Loading data...')
x_train, x_test, y_train, y_test, _ = utils.load_hand_data_cv()
print('Fitting model...')
model = RandomForestRegressor(max_depth=200, random_state=0, n_estimators=100, n_jobs=3, verbose=1)
model.fit(x_train, y_train)
utils.compute_metrics(y_test, model.predict(x_test), print_them=True)
locals()[method]()