-
Notifications
You must be signed in to change notification settings - Fork 26
/
evaluate_probes.py
246 lines (204 loc) · 8.79 KB
/
evaluate_probes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import pickle
import argparse
import einops
import torch
import numpy as np
from load import load_model
from sklearn.metrics import *
from utils import timestamp, MODEL_N_LAYERS, adjust_precision
from make_prompt_datasets import DATASET_MANAGERS, FEATURE_PROMPT_MAPPINGS
from train_probes import load_probe_result, load_all_probes, load_supervised_data
from sklearn.metrics.pairwise import cosine_similarity
from scipy.stats import spearmanr, kendalltau, pearsonr
from analysis.weight_composition import *
def save_evaluation(args, eval_result):
save_path = os.path.join(
os.getenv('RESULTS_DIR', 'results'),
args.experiment_name,
args.model,
args.entity_type,
args.feature_name,
'evaluations'
)
os.makedirs(save_path, exist_ok=True)
evaluation_metadata = [
args.evaluation_type,
args.experiment_type,
args.normalization_type,
args.label_processing,
args.activation_aggregation,
]
eval_name = '.'.join(evaluation_metadata) + '.p'
pickle.dump(
eval_result,
open(os.path.join(save_path, eval_name), 'wb')
)
def load_evaluation(
experiment_name, model, entity_type, feature_name,
evaluation_type, experiment_type, normalization_type='none',
label_processing='none', activation_aggregation='last'):
save_path = os.path.join(
os.getenv('RESULTS_DIR', 'results'),
experiment_name,
model,
entity_type,
feature_name,
'evaluations'
)
evaluation_metadata = [
evaluation_type,
experiment_type,
normalization_type,
label_processing,
activation_aggregation,
]
eval_name = '.'.join(evaluation_metadata) + '.p'
save_file = os.path.join(save_path, eval_name)
return pickle.load(open(save_file, 'rb'))
def load_all_probe_evals(experiment_name, model_name, entity_type, feature_name):
probe_path = os.path.join(
os.getenv('RESULTS_DIR', 'results'),
experiment_name,
model_name,
entity_type,
feature_name,
'evaluations'
)
experiment_metadata = (experiment_name, model_name, entity_type)
probe_files = os.listdir(probe_path)
probe_files = [f for f in probe_files if f.endswith('.p')]
probes = {}
for probe_file in probe_files:
probe_metadata = tuple(probe_file.split('.')[:-1])
probe_results = pickle.load(
open(os.path.join(probe_path, probe_file), 'rb'))
probes[experiment_metadata + probe_metadata] = probe_results
return probes
def evaluate_ranking(args, probe, prompt_name, layer, save_projections=False):
# load data
layer_activations, entity_values, test_ixs = load_supervised_data(
args, manager, args.feature_name, prompt_name, layer)
test_entity_values = entity_values[test_ixs]
feature_proj = (torch.tensor(layer_activations) @ probe).numpy()
all_spearman = spearmanr(feature_proj, entity_values)
test_spearman = spearmanr(feature_proj[test_ixs], test_entity_values)
train_spearman = spearmanr(
feature_proj[~test_ixs], entity_values[~test_ixs])
all_kendall = kendalltau(feature_proj, entity_values)
test_kendall = kendalltau(feature_proj[test_ixs], test_entity_values)
train_kendall = kendalltau(
feature_proj[~test_ixs], entity_values[~test_ixs])
all_pearson = pearsonr(feature_proj, entity_values)
test_pearson = pearsonr(feature_proj[test_ixs], test_entity_values)
train_pearson = pearsonr(
feature_proj[~test_ixs], entity_values[~test_ixs])
# TODO: add weights
result_dict = {
'all_spearman_coef': all_spearman.correlation,
'train_spearman_coef': train_spearman.correlation,
'test_spearman_coef': test_spearman.correlation,
'all_kendall_coef': all_kendall.correlation,
'train_kendall_coef': train_kendall.correlation,
'test_kendall_coef': test_kendall.correlation,
'all_pearson_coef': all_pearson.correlation,
'train_pearson_coef': train_pearson.correlation,
'test_pearson_coef': test_pearson.correlation,
'all_spearman_p': all_spearman.pvalue,
'train_spearman_p': train_spearman.pvalue,
'test_spearman_p': test_spearman.pvalue,
'all_kendall_p': all_kendall.pvalue,
'train_kendall_p': train_kendall.pvalue,
'test_kendall_p': test_kendall.pvalue,
'all_pearson_p': all_pearson.pvalue,
'train_pearson_p': train_pearson.pvalue,
'test_pearson_p': test_pearson.pvalue,
'norm': torch.norm(probe).item(),
}
if save_projections:
result_dict['feature_projection'] = feature_proj.astype(np.float16)
return result_dict
def evaluate_layer_and_prompt_generalization(args, probe):
transfer_results = {}
for layer in range(MODEL_N_LAYERS[args.model]):
prompt_key_list = FEATURE_PROMPT_MAPPINGS[args.entity_type][args.feature_name]
for transfer_prompt in prompt_key_list:
transfer_results[(layer, transfer_prompt)] = evaluate_ranking(
args, probe, transfer_prompt, layer)
return transfer_results
def evaluate_inter_feature_generalization():
raise NotImplementedError
def evaluate_probe(args, probe_results, layer):
raise NotImplementedError
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# experiment params
parser.add_argument(
'--experiment_name', type=str, help='Name of experiment for save dir')
parser.add_argument(
'--experiment_type', type=str, default='spearman_train',
help='Type of experiment to evaluate')
parser.add_argument(
'--evaluation_type', type=str, default='oos_generalization',
choices=['oos_generalization', 'composition',
'layer_and_prompt_generalization', 'cross_feature_generalization'])
parser.add_argument(
'--model', default='pythia-70m',
help='Name of model from TransformerLens')
parser.add_argument(
'--entity_type',
help='Name of feature collection (should be dir under processed_datasets/)')
parser.add_argument(
'--feature_name', type=str,
help='Name of feature to probe, must be in FEATURE_PROMPT_MAPPINGS')
# never changed from defaults
parser.add_argument(
'--normalization_type', type=str, default='none',
help='Type of normalization to apply to activations before training')
parser.add_argument(
'--label_processing', type=str, default='none',
help='Type of weighting to apply to labels before training')
parser.add_argument(
'--activation_aggregation', default='last',
help='Average activations across all tokens in a sequence')
args = parser.parse_args()
n_layers = MODEL_N_LAYERS[args.model]
if int(os.getenv('SLURM_CPUS_PER_TASK', -1)) > 0:
torch.set_num_threads(int(os.getenv('SLURM_CPUS_PER_TASK', 1)))
manager = DATASET_MANAGERS[args.entity_type]
if args.evaluation_type == 'composition':
torch.set_grad_enabled(False)
model = load_model(args.model)
probes = load_all_probes(
args.experiment_name, args.model, args.entity_type, args.feature_name)
eval_results = {}
for key in probes.keys():
experiment_type = key[3]
prompt_name = key[-1]
if experiment_type != args.experiment_type:
continue
for layer in probes[key].keys():
print(timestamp(),
f'running evaluation on {args.model} {args.evaluation_type}.{args.feature_name}.L{layer}')
probe_key = 'rank_probe' if experiment_type == 'lsq_train' else 'probe'
probe = torch.tensor(
probes[key][layer][probe_key]).to(torch.float32)
# run evaluations
if args.evaluation_type == 'oos_generalization':
probe_results = evaluate_ranking(
args, probe, prompt_name, layer, save_projections=True)
eval_results[(layer, prompt_name)] = probe_results
elif args.evaluation_type == 'layer_and_prompt_generalization':
probe_results = evaluate_layer_and_prompt_generalization(
args, probe)
eval_results[(layer, prompt_name)] = probe_results
elif args.evaluation_type == 'composition':
composition_results = evaluate_probe_composition(
model, probe)
eval_results[(layer, prompt_name)] = composition_results
elif args.evaluation_type == 'cross_feature_generalization':
generalization_results = evaluate_inter_feature_generalization(
args, probe)
eval_results[(layer, prompt_name)] = generalization_results
save_evaluation(args, eval_results)